Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Review of tribological properties of polyimide-based composite materials

Review of tribological properties of polyimide-based composite materials As a high-performance engineering plastic, polyimide (PI) is widely used in the aerospace, electronics and automotive industries. This paper aims to review the latest progress in the tribological properties of PI-based composites, especially the effects of nanofiller selection, composite structure design and material modification on the tribological and mechanical properties of PI-matrix composites.Design/methodology/approachThe preparation technology of PI and its composites is introduced and the effects of carbon nanotubes (CNTs), carbon fibers (CFs), graphene and its derivatives on the mechanical and tribological properties of PI-based composites are discussed. The effects of different nanofillers on tensile strength, tensile modulus, coefficient of friction and wear rate of PI-based composites are compared.FindingsCNTs can serve as the strengthening and lubricating phase of PI, whereas CFs can significantly enhance the mechanical properties of the matrix. Two-dimensional graphene and its derivatives have a high modulus of elasticity and self-lubricating properties, making them ideal nanofillers to improve the lubrication performance of PI. In addition, copolymerization can improve the fracture toughness and impact resistance of PI, thereby enhancing its mechanical properties.Originality/valueThe mechanical and tribological properties of PI matrix composites vary depending on the nanofiller. Compared with nanofibers and nanoparticles, layered reinforcements can better improve the friction properties of PI composites. The synergistic effect of different composite fillers will become an important research system in the field of tribology in the future. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Industrial Lubrication and Tribology Emerald Publishing

Review of tribological properties of polyimide-based composite materials

Loading next page...
 
/lp/emerald-publishing/review-of-tribological-properties-of-polyimide-based-composite-oX3RyxParv

References (92)

Publisher
Emerald Publishing
Copyright
© Emerald Publishing Limited
ISSN
0036-8792
eISSN
0036-8792
DOI
10.1108/ilt-05-2023-0138
Publisher site
See Article on Publisher Site

Abstract

As a high-performance engineering plastic, polyimide (PI) is widely used in the aerospace, electronics and automotive industries. This paper aims to review the latest progress in the tribological properties of PI-based composites, especially the effects of nanofiller selection, composite structure design and material modification on the tribological and mechanical properties of PI-matrix composites.Design/methodology/approachThe preparation technology of PI and its composites is introduced and the effects of carbon nanotubes (CNTs), carbon fibers (CFs), graphene and its derivatives on the mechanical and tribological properties of PI-based composites are discussed. The effects of different nanofillers on tensile strength, tensile modulus, coefficient of friction and wear rate of PI-based composites are compared.FindingsCNTs can serve as the strengthening and lubricating phase of PI, whereas CFs can significantly enhance the mechanical properties of the matrix. Two-dimensional graphene and its derivatives have a high modulus of elasticity and self-lubricating properties, making them ideal nanofillers to improve the lubrication performance of PI. In addition, copolymerization can improve the fracture toughness and impact resistance of PI, thereby enhancing its mechanical properties.Originality/valueThe mechanical and tribological properties of PI matrix composites vary depending on the nanofiller. Compared with nanofibers and nanoparticles, layered reinforcements can better improve the friction properties of PI composites. The synergistic effect of different composite fillers will become an important research system in the field of tribology in the future.

Journal

Industrial Lubrication and TribologyEmerald Publishing

Published: Oct 31, 2023

Keywords: Polyimide; Nanofiller; Tribology; Mechanical properties; Nanocomposites

There are no references for this article.