Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Review of short-text classification

Review of short-text classification Rapid developments in social networks and their usage in everyday life have caused an explosion in the amount of short electronic documents. Thus, the need to classify this type of document based on their content has a significant implication in many applications. The need to classify these documents in relevant classes according to their text contents should be interested in many practical reasons. Short-text classification is an essential step in many applications, such as spam filtering, sentiment analysis, Twitter personalization, customer review and many other applications related to social networks. Reviews on short text and its application are limited. Thus, this paper aims to discuss the characteristics of short text, its challenges and difficulties in classification. The paper attempt to introduce all stages in principle classification, the technique used in each stage and the possible development trend in each stage.Design/methodology/approachThe paper as a review of the main aspect of short-text classification. The paper is structured based on the classification task stage.FindingsThis paper discusses related issues and approaches to these problems. Further research could be conducted to address the challenges in short texts and avoid poor accuracy in classification. Problems in low performance can be solved by using optimized solutions, such as genetic algorithms that are powerful in enhancing the quality of selected features. Soft computing solution has a fuzzy logic that makes short-text problems a promising area of research.Originality/valueUsing a powerful short-text classification method significantly affects many applications in terms of efficiency enhancement. Current solutions still have low performance, implying the need for improvement. This paper discusses related issues and approaches to these problems. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png International Journal of Web Information Systems Emerald Publishing

Loading next page...
 
/lp/emerald-publishing/review-of-short-text-classification-v0CxIzkm0t
Publisher
Emerald Publishing
Copyright
© Emerald Publishing Limited
ISSN
1744-0084
DOI
10.1108/ijwis-12-2017-0083
Publisher site
See Article on Publisher Site

Abstract

Rapid developments in social networks and their usage in everyday life have caused an explosion in the amount of short electronic documents. Thus, the need to classify this type of document based on their content has a significant implication in many applications. The need to classify these documents in relevant classes according to their text contents should be interested in many practical reasons. Short-text classification is an essential step in many applications, such as spam filtering, sentiment analysis, Twitter personalization, customer review and many other applications related to social networks. Reviews on short text and its application are limited. Thus, this paper aims to discuss the characteristics of short text, its challenges and difficulties in classification. The paper attempt to introduce all stages in principle classification, the technique used in each stage and the possible development trend in each stage.Design/methodology/approachThe paper as a review of the main aspect of short-text classification. The paper is structured based on the classification task stage.FindingsThis paper discusses related issues and approaches to these problems. Further research could be conducted to address the challenges in short texts and avoid poor accuracy in classification. Problems in low performance can be solved by using optimized solutions, such as genetic algorithms that are powerful in enhancing the quality of selected features. Soft computing solution has a fuzzy logic that makes short-text problems a promising area of research.Originality/valueUsing a powerful short-text classification method significantly affects many applications in terms of efficiency enhancement. Current solutions still have low performance, implying the need for improvement. This paper discusses related issues and approaches to these problems.

Journal

International Journal of Web Information SystemsEmerald Publishing

Published: Jun 10, 2019

Keywords: Social networks; Classification; Sentiment analysis; Feature selection; Short text

References