Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Response surface methodology-based new model to optimize heat transfer and shear stress for ferrites/motor oil hybrid nanofluid

Response surface methodology-based new model to optimize heat transfer and shear stress for... This study aims to optimize heat transfer efficiency and minimize friction factor and entropy generation in hybrid nanofluid flows through porous media. By incorporating factors such as melting effect, buoyancy, viscous dissipation and no-slip velocity on a stretchable surface, the aim is to enhance overall performance. Additionally, sensitivity analysis using response surface methodology is used to evaluate the influence of key parameters on response functions.Design/methodology/approachAfter deriving suitable Lie-group transformations, the modeled equations are solved numerically using the “spectral local linearization method.” This approach is validated through rigorous numerical comparisons and error estimations, demonstrating strong alignment with prior studies.FindingsThe findings reveal that higher Darcy numbers and melting parameters are associated with decreased entropy (35.86% and 35.93%, respectively) and shear stress, increased heat transmission (16.4% and 30.41%, respectively) in hybrid nanofluids. Moreover, response surface methodology uses key factors, concerning the Nusselt number and shear stress as response variables in a quadratic model. Notably, the model exhibits exceptional accuracy with $R^2$ values of 99.99% for the Nusselt number and 100.00% for skin friction. Additionally, optimization results demonstrate a notable sensitivity to the key parameters.Research limitations/implicationsLubrication is a vital method to minimize friction and wear in the automobile sector, contributing significantly to energy efficiency, environmental conservation and carbon reduction. The incorporation of nickel and manganese zinc ferrites into SAE 20 W-40 motor oil lubricants, as defined by the Society of Automotive Engineers, significantly improves their performance, particularly in terms of tribological attributes.Originality/valueThis work stands out for its focus on applications such as hybrid electromagnetic fuel cells and nano-magnetic material processing. While these applications are gaining interest, there is still a research gap regarding the effects of melting on heat transfer in a NiZnFe_2O_4-MnZnFe_2O_4/20W40 motor oil hybrid nanofluid over a stretchable surface, necessitating a thorough investigation that includes both numerical simulations and statistical analysis. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png International Journal of Numerical Methods for Heat and Fluid Flow Emerald Publishing

Response surface methodology-based new model to optimize heat transfer and shear stress for ferrites/motor oil hybrid nanofluid

Loading next page...
 
/lp/emerald-publishing/response-surface-methodology-based-new-model-to-optimize-heat-transfer-QWrnrNzJFB

References (49)

Publisher
Emerald Publishing
Copyright
© Emerald Publishing Limited
ISSN
0961-5539
eISSN
0961-5539
DOI
10.1108/hff-03-2024-0199
Publisher site
See Article on Publisher Site

Abstract

This study aims to optimize heat transfer efficiency and minimize friction factor and entropy generation in hybrid nanofluid flows through porous media. By incorporating factors such as melting effect, buoyancy, viscous dissipation and no-slip velocity on a stretchable surface, the aim is to enhance overall performance. Additionally, sensitivity analysis using response surface methodology is used to evaluate the influence of key parameters on response functions.Design/methodology/approachAfter deriving suitable Lie-group transformations, the modeled equations are solved numerically using the “spectral local linearization method.” This approach is validated through rigorous numerical comparisons and error estimations, demonstrating strong alignment with prior studies.FindingsThe findings reveal that higher Darcy numbers and melting parameters are associated with decreased entropy (35.86% and 35.93%, respectively) and shear stress, increased heat transmission (16.4% and 30.41%, respectively) in hybrid nanofluids. Moreover, response surface methodology uses key factors, concerning the Nusselt number and shear stress as response variables in a quadratic model. Notably, the model exhibits exceptional accuracy with $R^2$ values of 99.99% for the Nusselt number and 100.00% for skin friction. Additionally, optimization results demonstrate a notable sensitivity to the key parameters.Research limitations/implicationsLubrication is a vital method to minimize friction and wear in the automobile sector, contributing significantly to energy efficiency, environmental conservation and carbon reduction. The incorporation of nickel and manganese zinc ferrites into SAE 20 W-40 motor oil lubricants, as defined by the Society of Automotive Engineers, significantly improves their performance, particularly in terms of tribological attributes.Originality/valueThis work stands out for its focus on applications such as hybrid electromagnetic fuel cells and nano-magnetic material processing. While these applications are gaining interest, there is still a research gap regarding the effects of melting on heat transfer in a NiZnFe_2O_4-MnZnFe_2O_4/20W40 motor oil hybrid nanofluid over a stretchable surface, necessitating a thorough investigation that includes both numerical simulations and statistical analysis.

Journal

International Journal of Numerical Methods for Heat and Fluid FlowEmerald Publishing

Published: Sep 4, 2024

Keywords: Hybrid nanofluid (NiZnFe2O4−MnZnFe2O4/SAE 20W-40 motor oil); Melting phenomena; Porous media; Entropy generation; Spectral method; RSM; Sensitivity analysis

There are no references for this article.