Access the full text.
Sign up today, get DeepDyve free for 14 days.
Purpose – The purpose of this paper is to discuss the light scattering of nonspherical particles that is very important for the research on the aerosol optical properties. Design/methodology/approach – In this paper, the authors use the spheroid model as the characteristic particle shape to study the single scattering albedo of real nonspherical particles. Meanwhile, the extinction and scattering cross section of spheroids are calculated with the T matrix method combined with the improved geometric optics approximation method (IGOM). Findings – Through this combination, the extinction and scattering cross section of spheroids can be obtained in the larger size range and aspect ratio range. Furthermore, the comparison of the single scattering albedo for the spheroids and their equivalent spheres is conducted in order to investigate the difference of the spherical and nonspherical particles. Originality/value – Simulation experiments indicate that the single scattering albedo of spheroids can be calculated well with this combination, and it has some obvious influence on the variation of the aspect ratio, incident wavelength, and complex refractive index of spheroid particles.
International Journal of Numerical Methods for Heat & Fluid Flow – Emerald Publishing
Published: Oct 28, 2014
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.