Remarks on symmetry conditions in computational homogenisation problems

Remarks on symmetry conditions in computational homogenisation problems Purpose – The purpose of this paper is to use symmetry conditions for the reduction of computing times in problems involving finite element‐based multi‐scale constitutive models of nonlinear heterogeneous media. Design/methodology/approach – Two types of representative volume element (RVE) symmetry often found in practice are considered: staggered‐translational and point symmetry. These are analyzed under three types RVE of kinematical constraints: periodic boundary fluctuations (typical of periodic media), linear boundary displacements (which gives an upper bound for the macroscopic stiffness) and the minimum kinematical constraint (corresponding to uniform boundary tractions and providing a lower bound for the macroscopic stiffness). Findings – Numerical examples show that substantial savings in computing times are achieved by taking advantage of such symmetries. These are particularly pronounced in fully coupled two‐scale analyses, where the macroscopic equilibrium problem is solved simultaneously with a large number of microscopic equilibrium problems at Gauss‐point level. Speed‐up factors in excess of seven have been found in such cases, when both symmetry conditions considered are present at the same time. Originality/value – This paper extends the original considerations of Ohno et al. to account for other RVE kinematical constraints, namely, the linear boundary displacement and the minimum kinematical constraint (or uniform boundary traction model). Provides a more precise assessment of the impact of the use of such symmetries on computing times by means of numerical examples. In addition, for completeness, the direct enforcement of such constraints within a Newton‐based finite element solution procedure for the RVE equilibrium problem is detailed in the paper. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Engineering Computations Emerald Publishing

Remarks on symmetry conditions in computational homogenisation problems

Loading next page...
 
/lp/emerald-publishing/remarks-on-symmetry-conditions-in-computational-homogenisation-Agw6dnDdX0
Publisher
Emerald Publishing
Copyright
Copyright © 2010 Emerald Group Publishing Limited. All rights reserved.
ISSN
0264-4401
DOI
10.1108/02644401011044612
Publisher site
See Article on Publisher Site

Abstract

Purpose – The purpose of this paper is to use symmetry conditions for the reduction of computing times in problems involving finite element‐based multi‐scale constitutive models of nonlinear heterogeneous media. Design/methodology/approach – Two types of representative volume element (RVE) symmetry often found in practice are considered: staggered‐translational and point symmetry. These are analyzed under three types RVE of kinematical constraints: periodic boundary fluctuations (typical of periodic media), linear boundary displacements (which gives an upper bound for the macroscopic stiffness) and the minimum kinematical constraint (corresponding to uniform boundary tractions and providing a lower bound for the macroscopic stiffness). Findings – Numerical examples show that substantial savings in computing times are achieved by taking advantage of such symmetries. These are particularly pronounced in fully coupled two‐scale analyses, where the macroscopic equilibrium problem is solved simultaneously with a large number of microscopic equilibrium problems at Gauss‐point level. Speed‐up factors in excess of seven have been found in such cases, when both symmetry conditions considered are present at the same time. Originality/value – This paper extends the original considerations of Ohno et al. to account for other RVE kinematical constraints, namely, the linear boundary displacement and the minimum kinematical constraint (or uniform boundary traction model). Provides a more precise assessment of the impact of the use of such symmetries on computing times by means of numerical examples. In addition, for completeness, the direct enforcement of such constraints within a Newton‐based finite element solution procedure for the RVE equilibrium problem is detailed in the paper.

Journal

Engineering ComputationsEmerald Publishing

Published: Jun 1, 2010

Keywords: Finite element analysis; Computer applications; Modelling; Kinematics

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off