Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You and Your Team.

Learn More →

Rapid trajectory optimization for hypersonic entry using convex optimization and pseudospectral method

Rapid trajectory optimization for hypersonic entry using convex optimization and pseudospectral... This paper aims to develop a novel trajectory optimization algorithm which is capable of producing high accuracy optimal solution with superior computational efficiency for the hypersonic entry problem.Design/methodology/approachA two-stage trajectory optimization framework is constructed by combining a convex-optimization-based algorithm and the pseudospectral-nonlinear programming (NLP) method. With a warm-start strategy, the initial-guess-sensitive issue of the general NLP method is significantly alleviated, and an accurate optimal solution can be obtained rapidly. Specifically, a successive convexification algorithm is developed, and it serves as an initial trajectory generator in the first stage. This algorithm is initial-guess-insensitive and efficient. However, approximation error would be brought by the convexification procedure as the hypersonic entry problem is highly nonlinear. Then, the classic pseudospectral-NLP solver is adopted in the second stage to obtain an accurate solution. Provided with high-quality initial guesses, the NLP solver would converge efficiently.FindingsNumerical experiments show that the overall computation time of the two-stage algorithm is much less than that of the single pseudospectral-NLP algorithm; meanwhile, the solution accuracy is satisfactory.Practical implicationsDue to its high computational efficiency and solution accuracy, the algorithm developed in this paper provides an option for rapid trajectory designing, and it has the potential to evolve into an online algorithm.Originality/valueThe paper provides a novel strategy for rapid hypersonic entry trajectory optimization applications. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Aircraft Engineering and Aerospace Technology Emerald Publishing

Rapid trajectory optimization for hypersonic entry using convex optimization and pseudospectral method

Loading next page...
 
/lp/emerald-publishing/rapid-trajectory-optimization-for-hypersonic-entry-using-convex-KfWNjCAfkA
Publisher
Emerald Publishing
Copyright
© Emerald Publishing Limited
ISSN
1748-8842
DOI
10.1108/aeat-06-2018-0159
Publisher site
See Article on Publisher Site

Abstract

This paper aims to develop a novel trajectory optimization algorithm which is capable of producing high accuracy optimal solution with superior computational efficiency for the hypersonic entry problem.Design/methodology/approachA two-stage trajectory optimization framework is constructed by combining a convex-optimization-based algorithm and the pseudospectral-nonlinear programming (NLP) method. With a warm-start strategy, the initial-guess-sensitive issue of the general NLP method is significantly alleviated, and an accurate optimal solution can be obtained rapidly. Specifically, a successive convexification algorithm is developed, and it serves as an initial trajectory generator in the first stage. This algorithm is initial-guess-insensitive and efficient. However, approximation error would be brought by the convexification procedure as the hypersonic entry problem is highly nonlinear. Then, the classic pseudospectral-NLP solver is adopted in the second stage to obtain an accurate solution. Provided with high-quality initial guesses, the NLP solver would converge efficiently.FindingsNumerical experiments show that the overall computation time of the two-stage algorithm is much less than that of the single pseudospectral-NLP algorithm; meanwhile, the solution accuracy is satisfactory.Practical implicationsDue to its high computational efficiency and solution accuracy, the algorithm developed in this paper provides an option for rapid trajectory designing, and it has the potential to evolve into an online algorithm.Originality/valueThe paper provides a novel strategy for rapid hypersonic entry trajectory optimization applications.

Journal

Aircraft Engineering and Aerospace TechnologyEmerald Publishing

Published: May 17, 2019

Keywords: Trajectory optimization; Convex optimization

References