Rapid fabrication of a non‐assembly robotic hand with embedded components

Rapid fabrication of a non‐assembly robotic hand with embedded components The application of rapid prototyping in fabricating a non‐assembly, multi‐articulated robotic hand with inserts is presented in this paper. The development of robotic systems that have all necessary components inserted, with no assembly required, and ready to function when the manufacturing process is complete is quite attractive. Layered manufacturing, in particular stereolithography, can provide a means to do this. Stereolithography produces a solid plastic prototype via a manufacturing procedure where three‐dimensional solid models are constructed layer upon layer by the fusion of material under computer control. An important aspect of the rapid prototype method used in this research is that multi‐jointed systems can be fabricated in one step, without requiring assembly, while maintaining the desired joint mobility. This document presents the design and techniques for part insertion into a non‐assembly, multi‐articulated, dexterous finger prototype built with stereolithography. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Assembly Automation Emerald Publishing

Rapid fabrication of a non‐assembly robotic hand with embedded components

Loading next page...
 
/lp/emerald-publishing/rapid-fabrication-of-a-non-assembly-robotic-hand-with-embedded-sOOnJu9a9F
Publisher
Emerald Publishing
Copyright
Copyright © 2004 Emerald Group Publishing Limited. All rights reserved.
ISSN
0144-5154
DOI
10.1108/01445150410562606
Publisher site
See Article on Publisher Site

Abstract

The application of rapid prototyping in fabricating a non‐assembly, multi‐articulated robotic hand with inserts is presented in this paper. The development of robotic systems that have all necessary components inserted, with no assembly required, and ready to function when the manufacturing process is complete is quite attractive. Layered manufacturing, in particular stereolithography, can provide a means to do this. Stereolithography produces a solid plastic prototype via a manufacturing procedure where three‐dimensional solid models are constructed layer upon layer by the fusion of material under computer control. An important aspect of the rapid prototype method used in this research is that multi‐jointed systems can be fabricated in one step, without requiring assembly, while maintaining the desired joint mobility. This document presents the design and techniques for part insertion into a non‐assembly, multi‐articulated, dexterous finger prototype built with stereolithography.

Journal

Assembly AutomationEmerald Publishing

Published: Dec 1, 2004

Keywords: Rapid prototypes; Robotics; Assembly

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off