Access the full text.
Sign up today, get DeepDyve free for 14 days.
This paper aims to show a series of hydrogels with adjustable mechanical properties, which can be cured quickly with visible light. The hydrogel is prepared conveniently with hydroxyethyl acrylate, cross-linker, gelatin and photoinitiator, and can be printed into certain 3D patterns with the direct ink write (DIW) 3D printer designed and developed by the research group.Design/methodology/approachIn this paper, the authors designed a composite sensitization initiation system that is suitable for hydrogels. The concentration of photoinitiator, gelatin and cross-linker was studied to optimize the curing efficiency and adjust the mechanical properties. A DIW 3D printer was designed for the printing of hydrogel. Pre-gel solution was loaded into printer for printing into established models. The models were made and sliced with software.FindingsThe hydrogels can be cured efficiently with 405-nm visible light. While adding various content of gelatin and cross-linker, the mechanical properties of hydrogels show from soft and fragile (elastic modulus of 121.18 kPa and work of tension of 218.11 kJ·m−3) to rigid and tough (elastic modulus of 505.15 kPa and work of tension of 969.00 kJ·m−3). The hydrogels have high capacity of water absorption. With the DIW 3D printer, pre-gel hydrogel solution can be printed into objects with certain dimension.Originality/valueIn this work, a composite sensitization initiation system was designed, and fast curing hydrogels with adjustable mechanical properties had been prepared conveniently, which has high equilibrium water content and 3D printability with the DIW 3D printer.
Rapid Prototyping Journal – Emerald Publishing
Published: Jun 4, 2021
Keywords: 3D printing; Hydrogel; Photopolymerization; Adjustable mechanical properties; Direct ink write; Visible light curable
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.