Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Preform optimal design in metal forging using genetic algorithms

Preform optimal design in metal forging using genetic algorithms A numerical method for shape optimisation in forging is presented. The goal of the optimisation is to eliminate work‐piece defects that may arise during the forging process. A two‐dimensional finite element code has been developed for the simulation of the mechanical process. The material is incompressible and it follows the Norton‐Hoff law. To deal with contact constraint the velocity projection algorithm is used. The optimisation process is conducted using a genetic algorithm supported by an elitist strategy. A new genetic operator called adaptive mutation has been developed to increase the efficiency of the search. The developed scheme is used to design optimal preform shapes for several axisymmetric examples. Continuous and discrete design variables are considered. The objective function of the optimisation problem is associated with the quality of the final product. Comparing the obtained optimal results with the literature validates the proposed optimisation method. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Engineering Computations: International Journal for Computer-Aided Engineering and Software Emerald Publishing

Loading next page...
 
/lp/emerald-publishing/preform-optimal-design-in-metal-forging-using-genetic-algorithms-q3Zla8PfZg

References (27)

Publisher
Emerald Publishing
Copyright
Copyright © 2004 Emerald Group Publishing Limited. All rights reserved.
ISSN
0264-4401
DOI
10.1108/02644400410545209
Publisher site
See Article on Publisher Site

Abstract

A numerical method for shape optimisation in forging is presented. The goal of the optimisation is to eliminate work‐piece defects that may arise during the forging process. A two‐dimensional finite element code has been developed for the simulation of the mechanical process. The material is incompressible and it follows the Norton‐Hoff law. To deal with contact constraint the velocity projection algorithm is used. The optimisation process is conducted using a genetic algorithm supported by an elitist strategy. A new genetic operator called adaptive mutation has been developed to increase the efficiency of the search. The developed scheme is used to design optimal preform shapes for several axisymmetric examples. Continuous and discrete design variables are considered. The objective function of the optimisation problem is associated with the quality of the final product. Comparing the obtained optimal results with the literature validates the proposed optimisation method.

Journal

Engineering Computations: International Journal for Computer-Aided Engineering and SoftwareEmerald Publishing

Published: Sep 1, 2004

Keywords: Material‐deforming processes; Optimization techniques; Programming and algorithm theory

There are no references for this article.