Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You and Your Team.

Learn More →

Predicting users’ demographic characteristics in a Chinese social media network

Predicting users’ demographic characteristics in a Chinese social media network PurposeBased on user-generated content from a Chinese social media platform, this paper aims to investigate multiple methods of constructing user profiles and their effectiveness in predicting their gender, age and geographic location.Design/methodology/approachThis investigation collected 331,634 posts from 4,440 users of Sina Weibo. The data were divided into two parts, for training and testing . First, a vector space model and topic models were applied to construct user profiles. A classification model was then learned by a support vector machine according to the training data set. Finally, we used the classification model to predict users’ gender, age and geographic location in the testing data set.FindingsThe results revealed that in constructing user profiles, latent semantic analysis performed better on the task of predicting gender and age. By contrast, the method based on a traditional vector space model worked better in making predictions regarding the geographic location. In the process of applying a topic model to construct user profiles, the authors found that different prediction tasks should use different numbers of topics.Originality/valueThis study explores different user profile construction methods to predict Chinese social media network users’ gender, age and geographic location. The results of this paper will help to improve the quality of personal information gathered from social media platforms, and thereby improve personalized recommendation systems and personalized marketing. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Electronic Library Emerald Publishing

Predicting users’ demographic characteristics in a Chinese social media network

The Electronic Library , Volume 35 (4): 12 – Aug 7, 2017

Loading next page...
 
/lp/emerald-publishing/predicting-users-demographic-characteristics-in-a-chinese-social-media-QPdi0A1Xmz
Publisher
Emerald Publishing
Copyright
Copyright © Emerald Group Publishing Limited
ISSN
0264-0473
DOI
10.1108/EL-09-2016-0203
Publisher site
See Article on Publisher Site

Abstract

PurposeBased on user-generated content from a Chinese social media platform, this paper aims to investigate multiple methods of constructing user profiles and their effectiveness in predicting their gender, age and geographic location.Design/methodology/approachThis investigation collected 331,634 posts from 4,440 users of Sina Weibo. The data were divided into two parts, for training and testing . First, a vector space model and topic models were applied to construct user profiles. A classification model was then learned by a support vector machine according to the training data set. Finally, we used the classification model to predict users’ gender, age and geographic location in the testing data set.FindingsThe results revealed that in constructing user profiles, latent semantic analysis performed better on the task of predicting gender and age. By contrast, the method based on a traditional vector space model worked better in making predictions regarding the geographic location. In the process of applying a topic model to construct user profiles, the authors found that different prediction tasks should use different numbers of topics.Originality/valueThis study explores different user profile construction methods to predict Chinese social media network users’ gender, age and geographic location. The results of this paper will help to improve the quality of personal information gathered from social media platforms, and thereby improve personalized recommendation systems and personalized marketing.

Journal

The Electronic LibraryEmerald Publishing

Published: Aug 7, 2017

References