Access the full text.
Sign up today, get DeepDyve free for 14 days.
Considerable evidence suggests that although they overlap, entrepreneurial and employee stressors have different causal antecedents and outcomes. However, limited empirical data explain how entrepreneurial traits, work and life drive entrepreneurial stressors and create entrepreneurial strain (commonly called entrepreneurial stress). Drawing on the challenge-hindrance framework (CHF), this paper hypothesises the causal effect of hindrance stressors on entrepreneurial strain. Furthermore, the study posits that entrepreneurial stressors and the resultant strain affect entrepreneurial behaviour.Design/methodology/approachThe study adopts an SEM-based machine-learning approach. Cross-lagged path models using SEM are used to analyse the data and train the machine-learning algorithm for cross-validation and generalisation. The sample consists of 415 entrepreneurs from three countries: India, Oman and United Arab Emirates. The entrepreneurs completed two self-report surveys over 12 months.FindingsThe results show that hindrances to personal and professional goal achievement, demand-capability gap and contradictions between aspiration and reality, primarily due to unique resource constraints, characterise entrepreneurial stressors leading to entrepreneurial strain. The study further asserts that entrepreneurial strain is a significant predictor of entrepreneurial behaviour, significantly affecting innovativeness behaviour. Finally, the finding suggests that psychological capital moderates the adverse impact of stressors on entrepreneurial strain over time.Originality/valueThis study contributes to the CHF by demonstrating the value of hindrance stressors in studying entrepreneurial strain and providing new insights into entrepreneurial coping. It argues that entrepreneurs cope effectively against hindrance stressors by utilising psychological capital. Furthermore, the study provides more evidence about the causal, reversed and reciprocal relationships between stressors and entrepreneurial strain through a cross-lagged analysis. This study is one of the first to evaluate the impact of entrepreneurial strain on entrepreneurial behaviour. Using a machine-learning approach is a new possibility for using machine learning for SEM and entrepreneurial strain.
International Journal of Entrepreneurial Behaviour & Research – Emerald Publishing
Published: Oct 11, 2021
Keywords: Hindrance stressors; Entrepreneurial strain; Entrepreneurial behaviour; Psychological capital; Cross-lagged panel study; Structural equation modelling; Machine learning
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.