Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You and Your Team.

Learn More →

Power-saving localization techniques for mobile devices

Power-saving localization techniques for mobile devices Purpose – This paper aims to develop generic strategies for improving energy consumption for location sensing on smartphones and compares the results of iOS and Android implementations. Mobile smartphone applications utilizing localization sensors (e.g. Global Positioning System) collectively face the problem of battery draining. Energy consumption is at a peak when applications permanently and stolidly use those sensors, even if their excessive exploitation is avoidable (e.g. when the user carrying the device is not moving). Design/methodology/approach – Considering contextual parameters affecting localization of mobile devices (i.e. incorporating movement probability, speed, etc.) is the basic idea for developing a strategy capable of reducing energy consumption for location determination on mobile devices. This paper explains the paradigm and draws the architecture for a generic context-based energy saving strategy for mobile location-based services. Findings – The paper reveals the positive implications in terms of energy consumption measured in the course of exhaustive tests for iOS and Android devices and discusses accuracy issues and potential workarounds, especially focusing on Apple’s M7 motion co-processor for consuming accelerometer data on a low energy level. Originality/value – The paper identifies and measures energy issues for location determination on smartphones and presents a generic and heuristic concept for saving energy. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png International Journal of Pervasive Computing and Communications Emerald Publishing

Power-saving localization techniques for mobile devices

Loading next page...
 
/lp/emerald-publishing/power-saving-localization-techniques-for-mobile-devices-EFv776n1Zl
Publisher
Emerald Publishing
Copyright
Copyright © Emerald Group Publishing Limited
ISSN
1742-7371
DOI
10.1108/IJPCC-01-2015-0001
Publisher site
See Article on Publisher Site

Abstract

Purpose – This paper aims to develop generic strategies for improving energy consumption for location sensing on smartphones and compares the results of iOS and Android implementations. Mobile smartphone applications utilizing localization sensors (e.g. Global Positioning System) collectively face the problem of battery draining. Energy consumption is at a peak when applications permanently and stolidly use those sensors, even if their excessive exploitation is avoidable (e.g. when the user carrying the device is not moving). Design/methodology/approach – Considering contextual parameters affecting localization of mobile devices (i.e. incorporating movement probability, speed, etc.) is the basic idea for developing a strategy capable of reducing energy consumption for location determination on mobile devices. This paper explains the paradigm and draws the architecture for a generic context-based energy saving strategy for mobile location-based services. Findings – The paper reveals the positive implications in terms of energy consumption measured in the course of exhaustive tests for iOS and Android devices and discusses accuracy issues and potential workarounds, especially focusing on Apple’s M7 motion co-processor for consuming accelerometer data on a low energy level. Originality/value – The paper identifies and measures energy issues for location determination on smartphones and presents a generic and heuristic concept for saving energy.

Journal

International Journal of Pervasive Computing and CommunicationsEmerald Publishing

Published: Apr 7, 2015

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$499/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month