Access the full text.
Sign up today, get DeepDyve free for 14 days.
Purpose– The purpose of this paper to classify a set of Turkish sign language (TSL) gestures by posture labeling based finite-state automata (FSA) that utilize depth values in location-based features. Gesture classification/recognition is crucial not only in communicating visually impaired people but also for educational purposes. The paper also demonstrates the practical use of the techniques for TSL. Design/methodology/approach– Gesture classification is based on the sequence of posture labels that are assigned by location-based features, which are invariant under rotation and scale. Grid-based signing space clustering scheme is proposed to guide the feature extraction step. Gestures are then recognized by FSA that process temporally ordered posture labels. Findings– Gesture classification accuracies and posture labeling performance are compared to k-nearest neighbor to show that the technique provides a reasonable framework for recognition of TSL gestures. A challenging set of gestures is tested, however the technique is extendible, and extending the training set will increase the performance. Practical implications– The outcomes can be utilized as a system for educational purposes especially for visually impaired children. Besides, a communication system would be designed based on this framework. Originality/value– The posture labeling scheme, which is inspired from keyframe labeling concept of video processing, is the original part of the proposed gesture classification framework. The search space is reduced to single dimension instead of 3D signing space, which also facilitates design of recognition schemes. Grid-based clustering scheme and location-based features are also new and depth values are received from Kinect. The paper is of interest for researchers in pattern recognition and computer vision.
Kybernetes – Emerald Publishing
Published: Apr 4, 2016
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.