Access the full text.
Sign up today, get DeepDyve free for 14 days.
PurposeThis paper aims to investigate whether the amount of local governments’ debt can be predicted by the level of political competition.Design/methodology/approachThe study uses the artificial neural network (ANN) to test whether ANN can “learn” from the observed data and make reliable out-of-sample predictions of the target variable value (i.e. a local government’s debt level) for given values of the predictor variables. An ANN is a non-parametric prediction tool, that is, not susceptible to the common limitations of regression-based parametric forecasting models, e.g. multi-collinearity and latent non-linear relations.FindingsThe study finds that “political competition” is a useful predictor of a local government’s debt level. Moreover, a positive relationship between political competition and debt level is indicated, i.e. increases in political competition typically leads to increases in a local government’s level of debt.Originality/valueThe study contributes to public sector reporting literature by investigating whether public debt levels can be predicted on the basis of political competition while discounting factors such as “political ideology” and “fragmentation”. The findings of the study are consistent with the expectations posited by public choice theory and have implications for public sector auditing, policy and reporting standards, particularly in terms of minimising potential political opportunism.
Accounting Research Journal – Emerald Publishing
Published: Sep 27, 2019
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.