Picture uncertain linguistic Bonferroni mean operators and their application to multiple attribute decision making

Picture uncertain linguistic Bonferroni mean operators and their application to multiple... PurposeThe purpose of this paper is to develop some picture uncertain linguistic aggregation operators based on Bonferroni mean operators, which is combined with multiple attribute decision-making (MADM) and has applied the proposed MADM model for selecting the service outsourcing provider of communications industry under picture uncertain linguistic environment.Design/methodology/approachThe service outsourcing provider selection problem of communications industry can be regarded as a typical MADM problem, in which the decision information should be aggregated. In this paper, the authors investigate the MADM problems with picture uncertain linguistic information based on traditional Bonferroni mean operator.FindingsThe results show that the proposed model can solve the MADM problems within the context of picture uncertain linguistic information, in which the attributes are existing interaction phenomenon. Some picture uncertain aggregation operators based on Bonferroni mean have been developed. A case study of service outsourcing provider selection problem of communications industry is provided to illustrate the effectiveness and feasibility of the proposed methods. The results show that the proposed methods are useful to aggregate the picture uncertain linguistic decision information in which the attributes are not independent so as to select the most suitable supplier.Research limitations/implicationsThe proposed methods can solve the picture uncertain linguistic MADM problem, in which the interactions exist among the attributes. Therefore, it can be used to solve service outsourcing provider selection problems and other similar management decision problems.Practical implicationsThis paper develops some picture uncertain aggregation operators based on Bonferroni mean and further presents two methods based on the proposed operators for solving MADM problems. It is useful to deal with multiple attribute interaction decision-making problems and suitable to solve a variety of management decision-making applications.Social implicationsIt is useful to deal with multiple attribute interaction decision-making problems and suitable to solve a variety of management decision-making applications.Originality/valueThe paper investigates the MADM problems with picture uncertain linguistic information based on traditional Bonferroni mean operator and develops the picture uncertain linguistic Bonferroni mean operator and picture uncertain linguistic geometric Bonferroni mean operator, picture uncertain linguistic weighted Bonferroni mean operator and picture uncertain linguistic weighted geometric Bonferroni mean operator for aggregating the picture uncertain linguistic information, respectively. Finally, a numerical example concerning the service outsourcing provider selection problem of communications industry is provided to illustrate the effectiveness and feasibility of the proposed methods. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Kybernetes Emerald Publishing

Picture uncertain linguistic Bonferroni mean operators and their application to multiple attribute decision making

Kybernetes, Volume 46 (10): 24 – Nov 6, 2017

Loading next page...
 
/lp/emerald-publishing/picture-uncertain-linguistic-bonferroni-mean-operators-and-their-eZTcZtBeBr
Publisher
Emerald Publishing
Copyright
Copyright © Emerald Group Publishing Limited
ISSN
0368-492X
DOI
10.1108/K-01-2017-0025
Publisher site
See Article on Publisher Site

Abstract

PurposeThe purpose of this paper is to develop some picture uncertain linguistic aggregation operators based on Bonferroni mean operators, which is combined with multiple attribute decision-making (MADM) and has applied the proposed MADM model for selecting the service outsourcing provider of communications industry under picture uncertain linguistic environment.Design/methodology/approachThe service outsourcing provider selection problem of communications industry can be regarded as a typical MADM problem, in which the decision information should be aggregated. In this paper, the authors investigate the MADM problems with picture uncertain linguistic information based on traditional Bonferroni mean operator.FindingsThe results show that the proposed model can solve the MADM problems within the context of picture uncertain linguistic information, in which the attributes are existing interaction phenomenon. Some picture uncertain aggregation operators based on Bonferroni mean have been developed. A case study of service outsourcing provider selection problem of communications industry is provided to illustrate the effectiveness and feasibility of the proposed methods. The results show that the proposed methods are useful to aggregate the picture uncertain linguistic decision information in which the attributes are not independent so as to select the most suitable supplier.Research limitations/implicationsThe proposed methods can solve the picture uncertain linguistic MADM problem, in which the interactions exist among the attributes. Therefore, it can be used to solve service outsourcing provider selection problems and other similar management decision problems.Practical implicationsThis paper develops some picture uncertain aggregation operators based on Bonferroni mean and further presents two methods based on the proposed operators for solving MADM problems. It is useful to deal with multiple attribute interaction decision-making problems and suitable to solve a variety of management decision-making applications.Social implicationsIt is useful to deal with multiple attribute interaction decision-making problems and suitable to solve a variety of management decision-making applications.Originality/valueThe paper investigates the MADM problems with picture uncertain linguistic information based on traditional Bonferroni mean operator and develops the picture uncertain linguistic Bonferroni mean operator and picture uncertain linguistic geometric Bonferroni mean operator, picture uncertain linguistic weighted Bonferroni mean operator and picture uncertain linguistic weighted geometric Bonferroni mean operator for aggregating the picture uncertain linguistic information, respectively. Finally, a numerical example concerning the service outsourcing provider selection problem of communications industry is provided to illustrate the effectiveness and feasibility of the proposed methods.

Journal

KybernetesEmerald Publishing

Published: Nov 6, 2017

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off