Access the full text.
Sign up today, get DeepDyve free for 14 days.
Purpose – The purpose of this paper is to propose physically based varying fidelity surrogates to be used in structural design optimization of space trusses. The main aim is to demonstrate its efficiency in reducing the number of high fidelity (HF) runs in the optimization process. Design/methodology/approach – In this work, surrogate models are built for space truss structures. This study uses functional as well as physical surrogates. In the latter, a grid analogy of the space truss is used thereby reducing drastically the analysis cost. Global and local approaches are considered. The latter will require a globalization scheme (sequential approximate optimization (SAO)) to ensure convergence. Findings – Physically based surrogates were proposed. Classical techniques, namely Taylor series and kriging, are also implemented for comparison purposes. A parameter study in kriging is necessary to select the best kriging model to be used as surrogate. A test case was considered for optimization and several surrogates were built. The CPU time is reduced when compared with the HF solution, for all surrogate‐based optimization performed. The best result was achieved combining the proposed physical model with additive corrections in a SAO strategy in which C1 continuity was imposed at each trust region center. Some guidance for other engineering applications was given. Originality/value – This is the first time that physical‐based surrogates for optimum design of space truss systems are used in the SAO framework. Physical surrogates typically exhibit better generalization properties than other surrogates forms, produce faster solutions, and do not suffer from dimensionality curse when used in approximate optimization strategies.
Engineering Computations – Emerald Publishing
Published: Oct 11, 2011
Keywords: Surrogate models; Approximation; Optimization techniques; Space trusses; Optimum design; Modelling
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.