Optimum Design of Flexible Printed Circuit Boards with Respect to Flexural Strength

Optimum Design of Flexible Printed Circuit Boards with Respect to Flexural Strength In the course of flexible PCB manufacture where the reliability of those parts subjected to bending stresses is a matter of utmost concern, the design of the PCB should enable the flexible interconnection parts to withstand the greatest possible bending stresses. Therefore, extensive investigations were carried out to demonstrate the relationship between the design and flexural strength. The study shows the functional correlation between bending radius, material thickness, type of material, design of the circuit and number of bending cycles. Only with a detailed knowledge of these five mentioned properties can reliable PCBs be designed and manufactured. The results of these investigations are based on a great number of bending experiments performed on a practical basis and demonstrate the numerical relation between all effects. As bending cycle results are subject to relatively high deviations, the whole problem has been investigated by means of statistical evaluation criteria. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Circuit World Emerald Publishing

Optimum Design of Flexible Printed Circuit Boards with Respect to Flexural Strength

Circuit World, Volume 6 (2): 10 – Jan 1, 1980

Loading next page...
 
/lp/emerald-publishing/optimum-design-of-flexible-printed-circuit-boards-with-respect-to-ehAARVLa2M
Publisher
Emerald Publishing
Copyright
Copyright © Emerald Group Publishing Limited
ISSN
0305-6120
DOI
10.1108/eb043611
Publisher site
See Article on Publisher Site

Abstract

In the course of flexible PCB manufacture where the reliability of those parts subjected to bending stresses is a matter of utmost concern, the design of the PCB should enable the flexible interconnection parts to withstand the greatest possible bending stresses. Therefore, extensive investigations were carried out to demonstrate the relationship between the design and flexural strength. The study shows the functional correlation between bending radius, material thickness, type of material, design of the circuit and number of bending cycles. Only with a detailed knowledge of these five mentioned properties can reliable PCBs be designed and manufactured. The results of these investigations are based on a great number of bending experiments performed on a practical basis and demonstrate the numerical relation between all effects. As bending cycle results are subject to relatively high deviations, the whole problem has been investigated by means of statistical evaluation criteria.

Journal

Circuit WorldEmerald Publishing

Published: Jan 1, 1980

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off