Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Optimization of cloud load balancing using fitness function and duopoly theory

Optimization of cloud load balancing using fitness function and duopoly theory Current industrial scenario is largely dependent on cloud computing paradigms. On-demand services provided by cloud data centre are paid as per use. Hence, it is very important to make use of the allocated resources to the maximum. The resource utilization is highly dependent on the allocation of resources to the incoming request. The allocation of requests is done with respect to the physical machines present in the datacenter. While allocating the tasks to these physical machines, it needs to be allocated in such a way that no physical machine is underutilized or over loaded. To make sure of this, optimal load balancing is very important.Design/methodology/approachThe paper proposes an algorithm which makes use of the fitness functions and duopoly game theory to allocate the tasks to the physical machines which can handle the resource requirement of the incoming tasks. The major focus of the proposed work is to optimize the load balancing in a datacenter. When optimization happens, none of the physical machine is neither overloaded nor under-utilized, hence resulting in efficient utilization of the resources.FindingsThe performance of the proposed algorithm is compared with different existing load balancing algorithms such as round-robin load (RR) ant colony optimization (ACO), artificial bee colony (ABC) with respect to the selected parameters response time, virtual machine migrations, host shut down and energy consumption. All the four parameters gave a positive result when the algorithm is simulated.Originality/valueThe contribution of this paper is towards the domain of cloud load balancing. The paper is proposing a novel approach to optimize the cloud load balancing process. The results obtained show that response time, virtual machine migrations, host shut down and energy consumption are reduced in comparison to few of the existing algorithms selected for the study. The proposed algorithm based on the duopoly function and fitness function brings in an optimized performance compared to the four algorithms analysed. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png International Journal of Intelligent Computing and Cybernetics Emerald Publishing

Optimization of cloud load balancing using fitness function and duopoly theory

Loading next page...
 
/lp/emerald-publishing/optimization-of-cloud-load-balancing-using-fitness-function-and-X8s0gXRSpd
Publisher
Emerald Publishing
Copyright
© Emerald Publishing Limited
ISSN
1756-378X
DOI
10.1108/ijicc-11-2020-0176
Publisher site
See Article on Publisher Site

Abstract

Current industrial scenario is largely dependent on cloud computing paradigms. On-demand services provided by cloud data centre are paid as per use. Hence, it is very important to make use of the allocated resources to the maximum. The resource utilization is highly dependent on the allocation of resources to the incoming request. The allocation of requests is done with respect to the physical machines present in the datacenter. While allocating the tasks to these physical machines, it needs to be allocated in such a way that no physical machine is underutilized or over loaded. To make sure of this, optimal load balancing is very important.Design/methodology/approachThe paper proposes an algorithm which makes use of the fitness functions and duopoly game theory to allocate the tasks to the physical machines which can handle the resource requirement of the incoming tasks. The major focus of the proposed work is to optimize the load balancing in a datacenter. When optimization happens, none of the physical machine is neither overloaded nor under-utilized, hence resulting in efficient utilization of the resources.FindingsThe performance of the proposed algorithm is compared with different existing load balancing algorithms such as round-robin load (RR) ant colony optimization (ACO), artificial bee colony (ABC) with respect to the selected parameters response time, virtual machine migrations, host shut down and energy consumption. All the four parameters gave a positive result when the algorithm is simulated.Originality/valueThe contribution of this paper is towards the domain of cloud load balancing. The paper is proposing a novel approach to optimize the cloud load balancing process. The results obtained show that response time, virtual machine migrations, host shut down and energy consumption are reduced in comparison to few of the existing algorithms selected for the study. The proposed algorithm based on the duopoly function and fitness function brings in an optimized performance compared to the four algorithms analysed.

Journal

International Journal of Intelligent Computing and CyberneticsEmerald Publishing

Published: Apr 23, 2021

Keywords: Cloud computing; Load balancer; Load balancing algorithms; Duopoly game theory; Fitness functions; Response time; Virtual machine migrations; Host shut down; Energy consumption

References