Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Optimal trajectory planning of the industrial robot using hybrid S-curve-PSO approach

Optimal trajectory planning of the industrial robot using hybrid S-curve-PSO approach The paper aims to develop an efficient and compact hybrid S-curve-PSO (particle swarm optimization) controller for the optimal trajectory planning of industrial robots in the presence of obstacles, especially those used in pick-and-place operations.Design/methodology/approachThe proposed methodology comprises a monotonic trajectory through bounded entropy of speed, velocity, acceleration and jerk. Thus, the robot’s trajectory planning corresponds with S-curve-PSO duality. This is achieved by dual navigation with minimal computational complexity. The matrix algebra-based computational complexity transforms the trajectory from random to compact. The linear programming problem represents the proposed robot in Euclidean space, and its optimal solution sets the corresponding optimal trajectory.FindingsThe proposed work ensures the efficient trajectory planning of the industrial robot in the presence of obstacles with optimized path length and time. The real-time and simulation analysis of the robot is presented for performance measurement, and their outcomes demonstrate a good correlation. Compared with the existing controller, it gives a noteworthy improvement in performance.Originality/valueThe novel S-curve-PSO hybrid approach is presented here, along with the LIDAR sensors, which generate the environment map and detect obstacles for autonomous trajectory planning. Based on the sensory information, the proposed approach generates the optimal trajectory by avoiding obstacles and minimizing the travel time, jerk, velocity and acceleration. The hybrid S-curve-PSO approach for optimal trajectory planning of the industrial robot in the presence of obstacles has not been presented by any researchers. This method considers the robot’s kinematics as well as its dynamics. The implementation of the PSO makes it computationally superior and faster. The selection of best-fit parameters by PSO assures the optimized trajectory in the presence of obstacles and uncertainty. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Robotic Intelligence and Automation Emerald Publishing

Optimal trajectory planning of the industrial robot using hybrid S-curve-PSO approach

Loading next page...
 
/lp/emerald-publishing/optimal-trajectory-planning-of-the-industrial-robot-using-hybrid-s-eVAK9PW3Gu

References (31)

Publisher
Emerald Publishing
Copyright
© Emerald Publishing Limited
ISSN
2754-6969
eISSN
2754-6977
DOI
10.1108/ria-07-2022-0187
Publisher site
See Article on Publisher Site

Abstract

The paper aims to develop an efficient and compact hybrid S-curve-PSO (particle swarm optimization) controller for the optimal trajectory planning of industrial robots in the presence of obstacles, especially those used in pick-and-place operations.Design/methodology/approachThe proposed methodology comprises a monotonic trajectory through bounded entropy of speed, velocity, acceleration and jerk. Thus, the robot’s trajectory planning corresponds with S-curve-PSO duality. This is achieved by dual navigation with minimal computational complexity. The matrix algebra-based computational complexity transforms the trajectory from random to compact. The linear programming problem represents the proposed robot in Euclidean space, and its optimal solution sets the corresponding optimal trajectory.FindingsThe proposed work ensures the efficient trajectory planning of the industrial robot in the presence of obstacles with optimized path length and time. The real-time and simulation analysis of the robot is presented for performance measurement, and their outcomes demonstrate a good correlation. Compared with the existing controller, it gives a noteworthy improvement in performance.Originality/valueThe novel S-curve-PSO hybrid approach is presented here, along with the LIDAR sensors, which generate the environment map and detect obstacles for autonomous trajectory planning. Based on the sensory information, the proposed approach generates the optimal trajectory by avoiding obstacles and minimizing the travel time, jerk, velocity and acceleration. The hybrid S-curve-PSO approach for optimal trajectory planning of the industrial robot in the presence of obstacles has not been presented by any researchers. This method considers the robot’s kinematics as well as its dynamics. The implementation of the PSO makes it computationally superior and faster. The selection of best-fit parameters by PSO assures the optimized trajectory in the presence of obstacles and uncertainty.

Journal

Robotic Intelligence and AutomationEmerald Publishing

Published: May 23, 2023

Keywords: Robotics; Path planning

There are no references for this article.