Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You and Your Team.

Learn More →

On the effect of the body force on the symmetry breaking in miscible two‐fluid channel flow

On the effect of the body force on the symmetry breaking in miscible two‐fluid channel flow The two‐dimensional flow field is numerically investigated using a compact finite difference and a pseudo‐spectral method when two fluids with different physical properties are mixing under gravity as well as flow rate. The gravity and the viscous mobility affect the fingering instability, i.e. the mixing range shrinks much at the large viscous mobility or the strong gravity. When the gravitation acts parallel to the main stream, the flow decelerates or accelerates according to its direction. The fingertip velocity is exactly expressed by a pure cosine function and especially invariant when the gravity acts along the −y direction at the high Peclet number. The maximum and fingertip velocities at the very low Peclet number are nearly symmetric with respect to the −y direction perpendicular to the main flow direction x. When the gravity acts along the −y direction, the flow field shows the asymmetry, and a pair of vortices is generated at both the very high Peclet number and less viscous mobility number. As the viscous mobility becomes large, the vortex scale enlarges at the small Peclet number, while the vortices are slightly destroyed at the relatively high Peclet number. As the gravitational angle changes clockwise from downstream to upstream, a pair of vortices evolves through a process of asymmetry. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Engineering Computations Emerald Publishing

On the effect of the body force on the symmetry breaking in miscible two‐fluid channel flow

Engineering Computations , Volume 21 (5): 17 – Jul 1, 2004

Loading next page...
 
/lp/emerald-publishing/on-the-effect-of-the-body-force-on-the-symmetry-breaking-in-miscible-PV3n18K9Ks
Publisher
Emerald Publishing
Copyright
Copyright © 2004 Emerald Group Publishing Limited. All rights reserved.
ISSN
0264-4401
DOI
10.1108/02644400410543931
Publisher site
See Article on Publisher Site

Abstract

The two‐dimensional flow field is numerically investigated using a compact finite difference and a pseudo‐spectral method when two fluids with different physical properties are mixing under gravity as well as flow rate. The gravity and the viscous mobility affect the fingering instability, i.e. the mixing range shrinks much at the large viscous mobility or the strong gravity. When the gravitation acts parallel to the main stream, the flow decelerates or accelerates according to its direction. The fingertip velocity is exactly expressed by a pure cosine function and especially invariant when the gravity acts along the −y direction at the high Peclet number. The maximum and fingertip velocities at the very low Peclet number are nearly symmetric with respect to the −y direction perpendicular to the main flow direction x. When the gravity acts along the −y direction, the flow field shows the asymmetry, and a pair of vortices is generated at both the very high Peclet number and less viscous mobility number. As the viscous mobility becomes large, the vortex scale enlarges at the small Peclet number, while the vortices are slightly destroyed at the relatively high Peclet number. As the gravitational angle changes clockwise from downstream to upstream, a pair of vortices evolves through a process of asymmetry.

Journal

Engineering ComputationsEmerald Publishing

Published: Jul 1, 2004

Keywords: Liquid flow; Finite difference methods

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$499/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month