Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You and Your Team.

Learn More →

On adaptive remeshing techniques for crack simulation problems

On adaptive remeshing techniques for crack simulation problems The simulation of fracture processes for discrete crack propagation is well established for linear‐elastic cracking problems. Applying finite element techniques for the numerical formulation, at every incremental macro‐crack step the element mesh has to be adapted such that the crack path remains independent of the initial mesh. The accuracy of the obtained results has to be controlled by suitable error estimators and error indicators. Considering the dependence of the predicted crack path on the precision of the displacement and stress computation, quality measures for the computed results are recommended. In this research the use of the Babuska/Rheinboldt error indicator in combination with linear‐elastic crack propagation problems is demonstrated. Based on this error measure an adaptive mesh refinement technique is developed. In comparison with classical discrete crack propagation simulations the advantages of the new concept can be clearly observed. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Engineering Computations Emerald Publishing

On adaptive remeshing techniques for crack simulation problems

Engineering Computations , Volume 15 (1): 15 – Feb 1, 1998

Loading next page...
 
/lp/emerald-publishing/on-adaptive-remeshing-techniques-for-crack-simulation-problems-h61c4YR9Es
Publisher
Emerald Publishing
Copyright
Copyright © 1998 MCB UP Ltd. All rights reserved.
ISSN
0264-4401
DOI
10.1108/02644409810200695
Publisher site
See Article on Publisher Site

Abstract

The simulation of fracture processes for discrete crack propagation is well established for linear‐elastic cracking problems. Applying finite element techniques for the numerical formulation, at every incremental macro‐crack step the element mesh has to be adapted such that the crack path remains independent of the initial mesh. The accuracy of the obtained results has to be controlled by suitable error estimators and error indicators. Considering the dependence of the predicted crack path on the precision of the displacement and stress computation, quality measures for the computed results are recommended. In this research the use of the Babuska/Rheinboldt error indicator in combination with linear‐elastic crack propagation problems is demonstrated. Based on this error measure an adaptive mesh refinement technique is developed. In comparison with classical discrete crack propagation simulations the advantages of the new concept can be clearly observed.

Journal

Engineering ComputationsEmerald Publishing

Published: Feb 1, 1998

Keywords: Adaptive mesh refinement; Crack propagation; Error estimation; Finite element method

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$499/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month