Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You and Your Team.

Learn More →

Numerical modelling of mass transfer in slits with semi‐permeable membrane walls

Numerical modelling of mass transfer in slits with semi‐permeable membrane walls A mathematical model to predict the concentration polarisation in nanofiltration/reverse osmosis is described. It incorporates physical modelling for mass transfer, laminar hydrodynamics and the membrane rejection coefficient. The SIMPLE algorithm solves the discretised equations derived from the governing differential equations. The convection and diffusive terms of those equations are discretised by the upwind, the hybrid and the exponential schemes for comparison purposes. The hybrid scheme appears as the most suitable one for the type of flows studied herein. The model is first applied to predict the concentration polarisation in a slit, for which mathematical solutions for velocities and concentrations exist. Different grids are used within the hybrid scheme to evaluate the model sensitivity to the grid refinement. The 55×25 grid results agree excellently for engineering purposes with the known solutions. The model, incorporating a variation law for the membrane intrinsic rejection coefficient, was also applied to the predictions of a laboratory slit where experiments are performed and reported, yielding excellent results when compared with the experiments. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Engineering Computations Emerald Publishing

Numerical modelling of mass transfer in slits with semi‐permeable membrane walls

Loading next page...
 
/lp/emerald-publishing/numerical-modelling-of-mass-transfer-in-slits-with-semi-permeable-hUrRcOOq0k
Publisher
Emerald Publishing
Copyright
Copyright © 2000 MCB UP Ltd. All rights reserved.
ISSN
0264-4401
DOI
10.1108/02644400010324857
Publisher site
See Article on Publisher Site

Abstract

A mathematical model to predict the concentration polarisation in nanofiltration/reverse osmosis is described. It incorporates physical modelling for mass transfer, laminar hydrodynamics and the membrane rejection coefficient. The SIMPLE algorithm solves the discretised equations derived from the governing differential equations. The convection and diffusive terms of those equations are discretised by the upwind, the hybrid and the exponential schemes for comparison purposes. The hybrid scheme appears as the most suitable one for the type of flows studied herein. The model is first applied to predict the concentration polarisation in a slit, for which mathematical solutions for velocities and concentrations exist. Different grids are used within the hybrid scheme to evaluate the model sensitivity to the grid refinement. The 55×25 grid results agree excellently for engineering purposes with the known solutions. The model, incorporating a variation law for the membrane intrinsic rejection coefficient, was also applied to the predictions of a laboratory slit where experiments are performed and reported, yielding excellent results when compared with the experiments.

Journal

Engineering ComputationsEmerald Publishing

Published: May 1, 2000

Keywords: Mathematical model; Predictive techniques; Filtration; Hydrodynamics; Membranes

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$499/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month