Access the full text.
Sign up today, get DeepDyve free for 14 days.
This paper aims to investigate the thermal characteristics of the clutch hydraulic system under various oil flow conditions. Increasing the oil flow is one of the most important approaches to reduce the clutch temperature. However, the effect of the oil flow on the clutch temperature remains to be explored.Design/methodology/approachThe thermal resistance network model and the lumped parameter method are used to study the thermal characteristics of the clutch hydraulic system. The predicted temperature variations of the clutch and the oil are compared with experimental data.FindingsResults demonstrate that the larger the friction power is, the higher the temperatures of the clutch and the oil are. However, the temperature growth rates of the clutch and oil present different trends: the former decreases gradually and the latter increases constantly. Additionally, increasing the oil flow within a certain range gives rise to the decrease of clutch temperature and the increase of oil temperature; nevertheless, their variation trends are gradually weakening. When the oil flow is large enough, it brings a slight effect on the clutch temperature rise.Originality/valueThis paper extends the knowledge into the oil flow supply of the clutch hydraulic system. The conclusions can provide a theoretical guidance for the oil management of the transmission system. Additionally, the thermal resistance network model is also effective and efficient for other hydraulic equipment to predict the temperature variation.
Industrial Lubrication and Tribology – Emerald Publishing
Published: Aug 22, 2019
Keywords: Temperature; Lubricant oil; Clutch; Thermal behaviour; Wet clutch; Thermal resistance network; Oil flow
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.