Non‐nested geometric multigrid method using consistency error correction for discrete magnetic curl‐curl formulations

Non‐nested geometric multigrid method using consistency error correction for discrete magnetic... The simulation of magnetic fields with geometric discretization schemes using magnetic vector potentials involves the solution of very large discrete consistently singular curl‐curl systems of equations. Geometric and algebraic multigrid schemes for their solution require intergrid transfer operators of restriction and prolongation that achieve the discrete conservation of integral quantities serving as state‐variables of geometric discretization methods. For non‐conservative restriction operations, a consistency error correction operator related to an algebraic filtering is proposed. Numerical results show the effects of the consistency correction for a non‐nested geometric multigrid method. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering Emerald Publishing

Non‐nested geometric multigrid method using consistency error correction for discrete magnetic curl‐curl formulations

Loading next page...
 
/lp/emerald-publishing/non-nested-geometric-multigrid-method-using-consistency-error-IsQSuKxoJh
Publisher
Emerald Publishing
Copyright
Copyright © 2004 Emerald Group Publishing Limited. All rights reserved.
ISSN
0332-1649
DOI
10.1108/03321640410553346
Publisher site
See Article on Publisher Site

Abstract

The simulation of magnetic fields with geometric discretization schemes using magnetic vector potentials involves the solution of very large discrete consistently singular curl‐curl systems of equations. Geometric and algebraic multigrid schemes for their solution require intergrid transfer operators of restriction and prolongation that achieve the discrete conservation of integral quantities serving as state‐variables of geometric discretization methods. For non‐conservative restriction operations, a consistency error correction operator related to an algebraic filtering is proposed. Numerical results show the effects of the consistency correction for a non‐nested geometric multigrid method.

Journal

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic EngineeringEmerald Publishing

Published: Dec 1, 2004

Keywords: Magnetic fields; Simulation; Numerical analysis

References

  • An algebraic multigrid method for finite element discretizations with edge elements
    Reitzinger, S.; Schöberl, J.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off