Non‐linear dynamic analysis using one‐dimensional updated subspaces

Non‐linear dynamic analysis using one‐dimensional updated subspaces The purpose of this paper is to improve the effectiveness of ordinary reduction methods performance, in nonlinear dynamic analysis. In this paper, the error vector due to linear and nonlinear dynamic analysis in generalized subspaces is extracted, and is decomposed into two independent components, namely outside and inside components. Based on the inside error component, a new iterative reduction method, one‐dimensional generalized subspace procedure (ODGS), is proposed where an innovative criterion is defined for updating the base vectors necessary for stiffness changes in nonlinear dynamic analysis. In this study, the performance of ODGS for linear and nonlinear analysis of elastodynamic systems including non‐proportional damping based on the Ritz generalized subspace has been proposed. Numerical examples show the competency of the proposed method in both economy and exactness. Time saving gained from the ODGS method could be recompensed to get much more accurate results consuming the same CPU time. This iterative method is more effective than the ordinary reduction methods. Since the method is directly derived from the discrete model based on the finite element method (FEM), the complexity of the structure does not affect directly the effectiveness of ODGS. Therefore, whenever the FEM is effectively capable to represent the topology of the structure, the ODGS results will also represent the system response properly. Same as any other reduction methods, accuracy of this iterative reduction method is directly related to the number of selected Ritz vectors, according to convergence criterion. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Engineering Computations Emerald Publishing

Non‐linear dynamic analysis using one‐dimensional updated subspaces

Engineering Computations, Volume 21 (8): 19 – Dec 1, 2004

Loading next page...
 
/lp/emerald-publishing/non-linear-dynamic-analysis-using-one-dimensional-updated-subspaces-0TUae3JwUd
Publisher
Emerald Publishing
Copyright
Copyright © 2004 Emerald Group Publishing Limited. All rights reserved.
ISSN
0264-4401
DOI
10.1108/02644400410554353
Publisher site
See Article on Publisher Site

Abstract

The purpose of this paper is to improve the effectiveness of ordinary reduction methods performance, in nonlinear dynamic analysis. In this paper, the error vector due to linear and nonlinear dynamic analysis in generalized subspaces is extracted, and is decomposed into two independent components, namely outside and inside components. Based on the inside error component, a new iterative reduction method, one‐dimensional generalized subspace procedure (ODGS), is proposed where an innovative criterion is defined for updating the base vectors necessary for stiffness changes in nonlinear dynamic analysis. In this study, the performance of ODGS for linear and nonlinear analysis of elastodynamic systems including non‐proportional damping based on the Ritz generalized subspace has been proposed. Numerical examples show the competency of the proposed method in both economy and exactness. Time saving gained from the ODGS method could be recompensed to get much more accurate results consuming the same CPU time. This iterative method is more effective than the ordinary reduction methods. Since the method is directly derived from the discrete model based on the finite element method (FEM), the complexity of the structure does not affect directly the effectiveness of ODGS. Therefore, whenever the FEM is effectively capable to represent the topology of the structure, the ODGS results will also represent the system response properly. Same as any other reduction methods, accuracy of this iterative reduction method is directly related to the number of selected Ritz vectors, according to convergence criterion.

Journal

Engineering ComputationsEmerald Publishing

Published: Dec 1, 2004

Keywords: Non‐linear control systems; Dynamics; Numerical analysis

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off