Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You and Your Team.

Learn More →

Non‐destructive subsurface damage monitoring in bearings failure mode using fractal dimension analysis

Non‐destructive subsurface damage monitoring in bearings failure mode using fractal dimension... Purpose – Bearings in field applications with high dynamic loading, e.g. wind energy plants, suffer from sudden failure initiated by subsurface material transformation, known as white etching cracks in a typical scale of μm, preferably around the maximum Hertzian stress zone. Despite many investigations in this field no precise knowledge about the root cause of those failures is available, due to the fact that failure under real service conditions of wind energy plants differs from what is known from test rig results in terms of contact loading, lubrication or dynamics. The purpose of this paper is to apply Barkhausen noise measurement to a full bearing test ring running under conditions of elastohydrodynamic lubrication (EHL) with high radial preload. Design/methodology/approach – Full bearing tests are carried out by use of DGBB (Deep Grove Ball Bearings) with 6206 specification, material set constant as 100Cr6, martensitic hardening, 10‐12 percent maximum retained austenite and radial preload of 3500 MPa. Speed is set 9000 rpm, temperature is self setting at 80°C by test conditions. For tests, synthetic hydrocarbon base oil (Poly‐α‐Olefine) with a 1 percent amount of molydenum‐dithiophosphate (organic chain given as 2‐ethylhexyl) was used. Findings – Non‐destructive fractal dimension analyses by use of Barkhausen noise measurements is of versatile value in terms of recording bearing manufacturing processes, but can also be part of non‐destructive condition monitoring of bearings in field applications, where predictive reactive maintenance is crucial for availability of the plant. Research limitations/implications – Barkhausen noise signal recording may also be valuable for case studies related to microstructure changes of steel under operation conditions. Bearings are exposed in plenty of conditions to phenomena such as straying currents, subsequently straying magnetic fields. Hardly anything is known about how microstructure of bearing steel is susceptible to such conditions. This will be part of further studies. Originality/value – Results given in the paper show that sudden bearing failure, according to formation of subsurface material property changes might be driven by activities of dislocations. Since those activities start with sequences of stress field‐induced formation of domains, later by formation of low‐angle subgrains, and at least phase transformation, recording of the Barkhausen signal would lead to real predictive condition monitoring in applications where a highly dynamic loading of the contact, even with low nominal contact pressure leads to sudden failure induced by white etching. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Industrial Lubrication and Tribology Emerald Publishing

Non‐destructive subsurface damage monitoring in bearings failure mode using fractal dimension analysis

Loading next page...
 
/lp/emerald-publishing/non-destructive-subsurface-damage-monitoring-in-bearings-failure-mode-1RypJF0p9t
Publisher
Emerald Publishing
Copyright
Copyright © 2012 Emerald Group Publishing Limited. All rights reserved.
ISSN
0036-8792
DOI
10.1108/00368791211218650
Publisher site
See Article on Publisher Site

Abstract

Purpose – Bearings in field applications with high dynamic loading, e.g. wind energy plants, suffer from sudden failure initiated by subsurface material transformation, known as white etching cracks in a typical scale of μm, preferably around the maximum Hertzian stress zone. Despite many investigations in this field no precise knowledge about the root cause of those failures is available, due to the fact that failure under real service conditions of wind energy plants differs from what is known from test rig results in terms of contact loading, lubrication or dynamics. The purpose of this paper is to apply Barkhausen noise measurement to a full bearing test ring running under conditions of elastohydrodynamic lubrication (EHL) with high radial preload. Design/methodology/approach – Full bearing tests are carried out by use of DGBB (Deep Grove Ball Bearings) with 6206 specification, material set constant as 100Cr6, martensitic hardening, 10‐12 percent maximum retained austenite and radial preload of 3500 MPa. Speed is set 9000 rpm, temperature is self setting at 80°C by test conditions. For tests, synthetic hydrocarbon base oil (Poly‐α‐Olefine) with a 1 percent amount of molydenum‐dithiophosphate (organic chain given as 2‐ethylhexyl) was used. Findings – Non‐destructive fractal dimension analyses by use of Barkhausen noise measurements is of versatile value in terms of recording bearing manufacturing processes, but can also be part of non‐destructive condition monitoring of bearings in field applications, where predictive reactive maintenance is crucial for availability of the plant. Research limitations/implications – Barkhausen noise signal recording may also be valuable for case studies related to microstructure changes of steel under operation conditions. Bearings are exposed in plenty of conditions to phenomena such as straying currents, subsequently straying magnetic fields. Hardly anything is known about how microstructure of bearing steel is susceptible to such conditions. This will be part of further studies. Originality/value – Results given in the paper show that sudden bearing failure, according to formation of subsurface material property changes might be driven by activities of dislocations. Since those activities start with sequences of stress field‐induced formation of domains, later by formation of low‐angle subgrains, and at least phase transformation, recording of the Barkhausen signal would lead to real predictive condition monitoring in applications where a highly dynamic loading of the contact, even with low nominal contact pressure leads to sudden failure induced by white etching.

Journal

Industrial Lubrication and TribologyEmerald Publishing

Published: Apr 20, 2012

Keywords: Stress (materials); Condition monitoring; Steel; Failure (mechanical); Bearings; Barkhausen noise; Steel microstructure; Non‐destructive

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$499/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month