Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Neural network model reference decoupling control for single leg joint of hydraulic quadruped robot

Neural network model reference decoupling control for single leg joint of hydraulic quadruped robot To control one of the joints during the actual movement of the hydraulically driven quadruped robot, all the other joints in the leg need to be locked. Once the joints are unlocked, there is a coupling effect among the joints. Therefore, during the normal exercise of the robot, the movement of each joint is affected by the coupling of other joints. This brings great difficulties to the coordinated motion control of the multi-joints of the robot. Therefore, it is necessary to reduce the influence of the coupling of the hydraulically driven quadruped robot.Design/methodology/approachTo solve the coupling problem with the joints of the hydraulic quadruped robot, based on the principle of mechanism dynamics and hydraulic control, the dynamic mathematical model of the single leg mechanism of the hydraulic quadruped robot is established. On this basis, the coupling dynamics model of the two joints of the thigh and the calf is derived. On the basis of the multivariable decoupling theory, a neural network (NN) model reference decoupling controller is designed.FindingsThe simulation and prototype experiment are carried out between the thigh joint and the calf joint of the hydraulic quadruped robot, and the results show that the proposed NN model reference decoupling control method is effective, and this method can reduce the cross-coupling between the thigh and the calf and improve the dynamic characteristics of the single joint of the leg.Practical implicationsThe proposed method provides technical support for the mechanical–hydraulic cross-coupling among the joints of the hydraulic quadruped robot, achieving coordinated movement of multiple joints of the robot and promoting the performance and automation level of the hydraulic quadruped robot.Originality/valueOn the basis of the theory of multivariable decoupling, a new decoupling control method is proposed, in which the mechanical–hydraulic coupling is taken as the coupling behavior of the hydraulic foot robot. The method reduces the influence of coupling of system, improves the control precision, realizes the coordinated movement among multiple joints and promotes the popularization and use of the hydraulically driven quadruped robot. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Assembly Automation Emerald Publishing

Neural network model reference decoupling control for single leg joint of hydraulic quadruped robot

Assembly Automation , Volume 38 (4): 11 – Oct 26, 2018

Loading next page...
 
/lp/emerald-publishing/neural-network-model-reference-decoupling-control-for-single-leg-joint-xZm3uz0iav
Publisher
Emerald Publishing
Copyright
© Emerald Publishing Limited
ISSN
0144-5154
DOI
10.1108/aa-08-2017-098
Publisher site
See Article on Publisher Site

Abstract

To control one of the joints during the actual movement of the hydraulically driven quadruped robot, all the other joints in the leg need to be locked. Once the joints are unlocked, there is a coupling effect among the joints. Therefore, during the normal exercise of the robot, the movement of each joint is affected by the coupling of other joints. This brings great difficulties to the coordinated motion control of the multi-joints of the robot. Therefore, it is necessary to reduce the influence of the coupling of the hydraulically driven quadruped robot.Design/methodology/approachTo solve the coupling problem with the joints of the hydraulic quadruped robot, based on the principle of mechanism dynamics and hydraulic control, the dynamic mathematical model of the single leg mechanism of the hydraulic quadruped robot is established. On this basis, the coupling dynamics model of the two joints of the thigh and the calf is derived. On the basis of the multivariable decoupling theory, a neural network (NN) model reference decoupling controller is designed.FindingsThe simulation and prototype experiment are carried out between the thigh joint and the calf joint of the hydraulic quadruped robot, and the results show that the proposed NN model reference decoupling control method is effective, and this method can reduce the cross-coupling between the thigh and the calf and improve the dynamic characteristics of the single joint of the leg.Practical implicationsThe proposed method provides technical support for the mechanical–hydraulic cross-coupling among the joints of the hydraulic quadruped robot, achieving coordinated movement of multiple joints of the robot and promoting the performance and automation level of the hydraulic quadruped robot.Originality/valueOn the basis of the theory of multivariable decoupling, a new decoupling control method is proposed, in which the mechanical–hydraulic coupling is taken as the coupling behavior of the hydraulic foot robot. The method reduces the influence of coupling of system, improves the control precision, realizes the coordinated movement among multiple joints and promotes the popularization and use of the hydraulically driven quadruped robot.

Journal

Assembly AutomationEmerald Publishing

Published: Oct 26, 2018

Keywords: Neural network; Control method; Joint decoupling; Model reference; Quadruped robot

References