Multidimensional modeling of two‐phase flow and heat transfer

Multidimensional modeling of two‐phase flow and heat transfer Purpose – This paper seeks to discuss a mechanistic modeling concept for local phenomena governing two‐ and multi‐phase flows and heat transfer. Design/methodology/approach – An overview is given of selected issues concerning the formulation of multidimensional models of two‐phase flow and heat transfer. A complete computational multiphase fluid dynamics (CMFD) model of two‐phase flow is presented, including local constitutive models applicable to two‐phase flows in heated channels. Results are shown of model testing and validation. Findings – It has been demonstrated that the overall model is capable of capturing various local flow and heat transfer phenomena in general, and the onset of temperature excursion (CHF) in low quality forced‐convection boiling, in particular. Research limitations/implications – Whereas the multiphase model formulation is applicable to a large class of problems, geometries and operating conditions, the closure laws and results are focused on forced‐convection boiling in heated channels. Practical implications – The proposed approach can be used to predict multidimensional velocity field and phase distribution in two‐phase flow devices and components used in thermal power plants, nuclear power plants and chemical processing plants. Originality/value – A complete mechanistic multidimensional model of forced‐convection boiling in heated channels is given. The potential of a CMFD approach is demonstrated to perform virtual experiments that can be used in system design and optimization, and in safety analysis. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png International Journal of Numerical Methods for Heat & Fluid Flow Emerald Publishing

Multidimensional modeling of two‐phase flow and heat transfer

Loading next page...
 
/lp/emerald-publishing/multidimensional-modeling-of-two-phase-flow-and-heat-transfer-ryMkhHaY5J
Publisher
Emerald Publishing
Copyright
Copyright © 2008 Emerald Group Publishing Limited. All rights reserved.
ISSN
0961-5539
DOI
10.1108/09615530810853691
Publisher site
See Article on Publisher Site

Abstract

Purpose – This paper seeks to discuss a mechanistic modeling concept for local phenomena governing two‐ and multi‐phase flows and heat transfer. Design/methodology/approach – An overview is given of selected issues concerning the formulation of multidimensional models of two‐phase flow and heat transfer. A complete computational multiphase fluid dynamics (CMFD) model of two‐phase flow is presented, including local constitutive models applicable to two‐phase flows in heated channels. Results are shown of model testing and validation. Findings – It has been demonstrated that the overall model is capable of capturing various local flow and heat transfer phenomena in general, and the onset of temperature excursion (CHF) in low quality forced‐convection boiling, in particular. Research limitations/implications – Whereas the multiphase model formulation is applicable to a large class of problems, geometries and operating conditions, the closure laws and results are focused on forced‐convection boiling in heated channels. Practical implications – The proposed approach can be used to predict multidimensional velocity field and phase distribution in two‐phase flow devices and components used in thermal power plants, nuclear power plants and chemical processing plants. Originality/value – A complete mechanistic multidimensional model of forced‐convection boiling in heated channels is given. The potential of a CMFD approach is demonstrated to perform virtual experiments that can be used in system design and optimization, and in safety analysis.

Journal

International Journal of Numerical Methods for Heat & Fluid FlowEmerald Publishing

Published: May 22, 2008

Keywords: Flow; Heat transfer; Modelling

References

  • Effects of heater length and orientation on the trigger mechanism for near‐saturated flow boiling critical heat flux – I. Photographic study and statistical characterization of the near‐wall interfacial features
    Gersey, C.O.; Mudawar, I.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off