Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You and Your Team.

Learn More →

Month in the Patent Office

Month in the Patent Office A gyroscopic control system for aeroplanes and other dirigible objects comprises 1 a pendulous gyroscope having its centre of gravity below the roll axis of the aeroplane, and comprising a frame 7, an outer gimbal ring 5 mounted to turn about the horizontal roll axis on the frame 7, an inner gimbal ring 3 mounted to turn about a normally vertical axis on the outer ring and a motor 1 mounted in the ring 3 to rotate about a normally horizontal spin axis normal to the roll axis 2 means for operating ailerons in accordance with deviation of the ring 5 relative to the frame about the roll axis 3 means operable, when the ring 3 precesses from a normal position, relatively to the outer ring 5, to apply, between the outer ring 5 and the frame 7, a torque of a corresponding sign to the relative movement between the rings in a direction to produce a counterprecession of the inner ring and 4 restoring means for applying a torque between the rings 3, 5 when the inner ring processes relatively to the outer ring in the opposite direction to the direction of precession. The movement of the gyroscope and the angular momentum of its rotor are so related to the forward velocity of the aeroplane, that the gyroscope will, when the aeroplane moves on a curved path, precess in azimuth under the influence of centrifugal force at approximately the same angular velocity as the aeroplane is turning, to maintain the relative relationship between the gyroscope axis and the aeroplane. As shown, the frame 7 is pivoted in a frame 9 mounted on the aeroplane on the same roll axis as the ring 5 which carries a weight 10. 2 Relative movement between the ring 5 and the frame 7 operates due to relative movement between the gyroscope and aeroplane, through a link 21 connected to the ring 5, a piston valve 22 mounted on the frame 7 to supply compressed air to a servomotor 27, which operates the ailerons. A lever 29 pivoted on the aeroplane and having a bifurcated end which engages the ring 7 and which is connected to the pistonrod 28 of the servomotor provides a followup mechanism. 3 Relative movement between the rings 3, 5 operates through a link 14 connected to the ring 3 a piston valve 13 to cause a piston 18 mounted on the ring 5 and connected to the frame 7 by a link 19 to apply a torque reaction between the frame 7 and the ring 5 in such a sense as to oppose the gravity torque due to the pendulous weight to limit the relative azimuthal precession of the ring 3. 4 A spring 20 mounted on the ring 5 applies a restoring torque through the link 14 to the ring 3 to cause a precession of the ring 5 about its foreandaft roll axis and thus return the ring 5 and the weight 10 back to the vertical plane. The mechanism will cause an aeroplane to fly on a curved course without appreciable banking. The apparatus may be modified so that the aeroplane is banked to the appropriate extent in curved flight by providing a torque between the frame 7 and the ring 5 which is proportional to the angular velocity at which the aeroplane is turning. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Aircraft Engineering and Aerospace Technology Emerald Publishing

Month in the Patent Office

Aircraft Engineering and Aerospace Technology , Volume 7 (12): 2 – Dec 1, 1935

Loading next page...
 
/lp/emerald-publishing/month-in-the-patent-office-QCuvM2ZfS0
Publisher
Emerald Publishing
Copyright
Copyright © Emerald Group Publishing Limited
ISSN
0002-2667
DOI
10.1108/eb030000
Publisher site
See Article on Publisher Site

Abstract

A gyroscopic control system for aeroplanes and other dirigible objects comprises 1 a pendulous gyroscope having its centre of gravity below the roll axis of the aeroplane, and comprising a frame 7, an outer gimbal ring 5 mounted to turn about the horizontal roll axis on the frame 7, an inner gimbal ring 3 mounted to turn about a normally vertical axis on the outer ring and a motor 1 mounted in the ring 3 to rotate about a normally horizontal spin axis normal to the roll axis 2 means for operating ailerons in accordance with deviation of the ring 5 relative to the frame about the roll axis 3 means operable, when the ring 3 precesses from a normal position, relatively to the outer ring 5, to apply, between the outer ring 5 and the frame 7, a torque of a corresponding sign to the relative movement between the rings in a direction to produce a counterprecession of the inner ring and 4 restoring means for applying a torque between the rings 3, 5 when the inner ring processes relatively to the outer ring in the opposite direction to the direction of precession. The movement of the gyroscope and the angular momentum of its rotor are so related to the forward velocity of the aeroplane, that the gyroscope will, when the aeroplane moves on a curved path, precess in azimuth under the influence of centrifugal force at approximately the same angular velocity as the aeroplane is turning, to maintain the relative relationship between the gyroscope axis and the aeroplane. As shown, the frame 7 is pivoted in a frame 9 mounted on the aeroplane on the same roll axis as the ring 5 which carries a weight 10. 2 Relative movement between the ring 5 and the frame 7 operates due to relative movement between the gyroscope and aeroplane, through a link 21 connected to the ring 5, a piston valve 22 mounted on the frame 7 to supply compressed air to a servomotor 27, which operates the ailerons. A lever 29 pivoted on the aeroplane and having a bifurcated end which engages the ring 7 and which is connected to the pistonrod 28 of the servomotor provides a followup mechanism. 3 Relative movement between the rings 3, 5 operates through a link 14 connected to the ring 3 a piston valve 13 to cause a piston 18 mounted on the ring 5 and connected to the frame 7 by a link 19 to apply a torque reaction between the frame 7 and the ring 5 in such a sense as to oppose the gravity torque due to the pendulous weight to limit the relative azimuthal precession of the ring 3. 4 A spring 20 mounted on the ring 5 applies a restoring torque through the link 14 to the ring 3 to cause a precession of the ring 5 about its foreandaft roll axis and thus return the ring 5 and the weight 10 back to the vertical plane. The mechanism will cause an aeroplane to fly on a curved course without appreciable banking. The apparatus may be modified so that the aeroplane is banked to the appropriate extent in curved flight by providing a torque between the frame 7 and the ring 5 which is proportional to the angular velocity at which the aeroplane is turning.

Journal

Aircraft Engineering and Aerospace TechnologyEmerald Publishing

Published: Dec 1, 1935

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$499/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month