Access the full text.
Sign up today, get DeepDyve free for 14 days.
Purpose – A model for streamers based on charge transport has been developed by MIT and ABB. The purpose of this paper is to investigate the consequences of changing numerical method from the finite element method (FEM) to the finite volume method (FVM) for simulations using the streamer model. The new solver is also used to extend the simulations to 3D. Design/methodology/approach – The equations from the MIT‐ABB streamer model are implemented in OpenFOAM which uses the FVM. Checks of the results are performed including verification of convergence. The solver is then applied to some of the key simulations from the FEM model and results presented. Findings – The results for second mode streamers are confirmed, whereas the results for third mode streamers differ significantly leading to questioning of one hypothesis proposed based on the FEM results. The 3D simulations give consistent results and show a way forward for future simulations. Originality/value – The FVM has not been applied to the model before and led to more confidence in second mode result and revising of third mode results. In addition the new simulation method makes it possible to extend the results to 3D.
COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering – Emerald Publishing
Published: Jul 1, 2014
Keywords: Finite volume method; Dielectric breakdown; OpenFOAM; Streamers; Transformer oil
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.