Modeling of Dynamic Recrystallization and Flow Stress of Nb‐Bearing Steels

Modeling of Dynamic Recrystallization and Flow Stress of Nb‐Bearing Steels The dynamic recrystallization (DRX) and flow stress of Nb‐bearing steels were investigated by means of isothermal single compression testing at temperatures of 850‐105° and at constant strain rate from 0.1 to 20s‐1 using a Gleeble 3800 thermo‐mechanical simulator in order to model the DRX processes and predict the flow stress during plate rolling. On the basis of the measured flow stress, a new model of DRX kinetics was proposed to calculate the volume fraction of dynamically recrystallized grains, which was a function of processing parameters such as deformation temperature, strain, strain rate, the initial austenite grain size and Nb content. The effect of deformation conditions was quantified by the Zener‐Hollomon parameter, in which the activation energy of deformation was expressed as a power function of Nb content. The critical strain was determined by using the method proposed by Jonas and co‐workers. It is shown that the ratio of the critical strain to the peak strain decreases with increasing Nb content, from which an empirical equation was developed. In addition, the influence of Nb content and deformation conditions on the steady state grain size was determined by fitting the experimental results to a linear relationship. Finally, the flow stress of Nb bearing steels was accurately predicted using a one‐internal‐variable evolution equation by taking Nb content as a parameter and including the influence of DRX. The comparison between the experimental and theoretical results confirmed that the modeling had a good accuracy to predict flow stresses during hot deformation. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Multidiscipline Modeling in Materials and Structures Emerald Publishing

Modeling of Dynamic Recrystallization and Flow Stress of Nb‐Bearing Steels

Loading next page...
 
/lp/emerald-publishing/modeling-of-dynamic-recrystallization-and-flow-stress-of-nb-bearing-hznA16DQFI
Publisher
Emerald Publishing
Copyright
Copyright © 2007 Emerald Group Publishing Limited. All rights reserved.
ISSN
1573-6105
D.O.I.
10.1163/157361107781360103
Publisher site
See Article on Publisher Site

Abstract

The dynamic recrystallization (DRX) and flow stress of Nb‐bearing steels were investigated by means of isothermal single compression testing at temperatures of 850‐105° and at constant strain rate from 0.1 to 20s‐1 using a Gleeble 3800 thermo‐mechanical simulator in order to model the DRX processes and predict the flow stress during plate rolling. On the basis of the measured flow stress, a new model of DRX kinetics was proposed to calculate the volume fraction of dynamically recrystallized grains, which was a function of processing parameters such as deformation temperature, strain, strain rate, the initial austenite grain size and Nb content. The effect of deformation conditions was quantified by the Zener‐Hollomon parameter, in which the activation energy of deformation was expressed as a power function of Nb content. The critical strain was determined by using the method proposed by Jonas and co‐workers. It is shown that the ratio of the critical strain to the peak strain decreases with increasing Nb content, from which an empirical equation was developed. In addition, the influence of Nb content and deformation conditions on the steady state grain size was determined by fitting the experimental results to a linear relationship. Finally, the flow stress of Nb bearing steels was accurately predicted using a one‐internal‐variable evolution equation by taking Nb content as a parameter and including the influence of DRX. The comparison between the experimental and theoretical results confirmed that the modeling had a good accuracy to predict flow stresses during hot deformation.

Journal

Multidiscipline Modeling in Materials and StructuresEmerald Publishing

Published: Jan 1, 2007

Keywords: Nb‐bearing steels; Dynamic recrystallization; Dynamic precipitation; Deformation activation energy; Flow stress model;

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off