Model refinements of transformers via a subproblem finite element method

Model refinements of transformers via a subproblem finite element method PurposeThis paper aims to develop a methodology for progressive finite element (FE) modeling of transformers, from simple to complex models of both magnetic cores and windings.Design/methodology/approachThe progressive modeling of transformers is performed via a subproblem (SP) FE method. A complete problem is split into SPs with different adapted overlapping meshes. Model refinements are performed from ideal to real flux tubes, one-dimensional to two-dimensional to three-dimensional models, linear to nonlinear materials, perfect to real materials, single wire to volume conductor windings and homogenized to fine models of cores and coils, with any coupling of these changes.FindingsThe proposed unified procedure efficiently feeds each SP via interface conditions (ICs), which lightens mesh-to-mesh sources transfers and quantifies the gain given by each refinement on both local fields and global quantities, with a clear view on its significance to justify its usefulness, if any. It can also help in education with a progressive understanding of the various aspects of transformer designs.Originality/valueModels of different accuracy levels are sequenced with successive additive corrections supported by different adapted meshes. The way the sources act at each correction step, up to the full models with their actual geometries, is given a particular care and generalized, allowing the proposed unified procedure. For all the considered corrections, the sources are always of IC type, thus only needed in layers of FE along boundaries, which lightens the required mesh-to-mesh projections between subproblems. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png COMPEL: Theinternational Journal for Computation and Mathematics in Electrical and Electronic Engineering Emerald Publishing

Loading next page...
 
/lp/emerald-publishing/model-refinements-of-transformers-via-a-subproblem-finite-element-3hQp0hiw2D
Publisher
Emerald Publishing
Copyright
Copyright © Emerald Group Publishing Limited
ISSN
0332-1649
DOI
10.1108/COMPEL-03-2016-0125
Publisher site
See Article on Publisher Site

Abstract

PurposeThis paper aims to develop a methodology for progressive finite element (FE) modeling of transformers, from simple to complex models of both magnetic cores and windings.Design/methodology/approachThe progressive modeling of transformers is performed via a subproblem (SP) FE method. A complete problem is split into SPs with different adapted overlapping meshes. Model refinements are performed from ideal to real flux tubes, one-dimensional to two-dimensional to three-dimensional models, linear to nonlinear materials, perfect to real materials, single wire to volume conductor windings and homogenized to fine models of cores and coils, with any coupling of these changes.FindingsThe proposed unified procedure efficiently feeds each SP via interface conditions (ICs), which lightens mesh-to-mesh sources transfers and quantifies the gain given by each refinement on both local fields and global quantities, with a clear view on its significance to justify its usefulness, if any. It can also help in education with a progressive understanding of the various aspects of transformer designs.Originality/valueModels of different accuracy levels are sequenced with successive additive corrections supported by different adapted meshes. The way the sources act at each correction step, up to the full models with their actual geometries, is given a particular care and generalized, allowing the proposed unified procedure. For all the considered corrections, the sources are always of IC type, thus only needed in layers of FE along boundaries, which lightens the required mesh-to-mesh projections between subproblems.

Journal

COMPEL: Theinternational Journal for Computation and Mathematics in Electrical and Electronic EngineeringEmerald Publishing

Published: Jan 3, 2017

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off