Model assessment in scientific computing

Model assessment in scientific computing PurposeThis paper aims to focus on the assessment of the ability of computer models with imperfect functional forms and uncertain input parameters to represent reality.Design/methodology/approachIn this assessment, both the agreement between a model’s predictions and available experiments and the robustness of this agreement to uncertainty have been evaluated. The concept of satisfying boundaries to represent input parameter sets that yield model predictions with acceptable fidelity to observed experiments has been introduced.FindingsSatisfying boundaries provide several useful indicators for model assessment, and when calculated for varying fidelity thresholds and input parameter uncertainties, reveal the trade-off between the robustness to uncertainty in model parameters, the threshold for satisfactory fidelity and the probability of satisfying the given fidelity threshold. Using a controlled case-study example, important modeling decisions such as acceptable level of uncertainty, fidelity requirements and resource allocation for additional experiments are shown.Originality/valueTraditional methods of model assessment are solely based on fidelity to experiments, leading to a single parameter set that is considered fidelity-optimal, which essentially represents the values which yield the optimal compensation between various sources of errors and uncertainties. Rather than maximizing fidelity, this study advocates for basing model assessment on the model’s ability to satisfy a required fidelity (or error tolerance). Evaluating the trade-off between error tolerance, parameter uncertainty and probability of satisfying this predefined error threshold provides us with a powerful tool for model assessment and resource allocation. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Engineering Computations Emerald Publishing

Model assessment in scientific computing

Loading next page...
 
/lp/emerald-publishing/model-assessment-in-scientific-computing-m6Co3ZFLoy
Publisher
Emerald Publishing
Copyright
Copyright © Emerald Group Publishing Limited
ISSN
0264-4401
DOI
10.1108/EC-03-2016-0109
Publisher site
See Article on Publisher Site

Abstract

PurposeThis paper aims to focus on the assessment of the ability of computer models with imperfect functional forms and uncertain input parameters to represent reality.Design/methodology/approachIn this assessment, both the agreement between a model’s predictions and available experiments and the robustness of this agreement to uncertainty have been evaluated. The concept of satisfying boundaries to represent input parameter sets that yield model predictions with acceptable fidelity to observed experiments has been introduced.FindingsSatisfying boundaries provide several useful indicators for model assessment, and when calculated for varying fidelity thresholds and input parameter uncertainties, reveal the trade-off between the robustness to uncertainty in model parameters, the threshold for satisfactory fidelity and the probability of satisfying the given fidelity threshold. Using a controlled case-study example, important modeling decisions such as acceptable level of uncertainty, fidelity requirements and resource allocation for additional experiments are shown.Originality/valueTraditional methods of model assessment are solely based on fidelity to experiments, leading to a single parameter set that is considered fidelity-optimal, which essentially represents the values which yield the optimal compensation between various sources of errors and uncertainties. Rather than maximizing fidelity, this study advocates for basing model assessment on the model’s ability to satisfy a required fidelity (or error tolerance). Evaluating the trade-off between error tolerance, parameter uncertainty and probability of satisfying this predefined error threshold provides us with a powerful tool for model assessment and resource allocation.

Journal

Engineering ComputationsEmerald Publishing

Published: Jul 3, 2017

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off