Access the full text.
Sign up today, get DeepDyve free for 14 days.
Purpose – The purpose of this paper is to focus on the use of a nickel‐titanium (nitinol) shape memory alloy (SMA) wire (capable of showing strains of up to 8 per cent) as the active element that drives a flexible and lightweight micropositioning actuator. The purpose of this paper is to finely control the wire contraction, and as a result, the deflection of the actuator, with micrometric accuracies. Design/methodology/approach – Different experimental platforms are built, all of them using the same nitinol wire as the active element. In all cases a current is applied to the wire to heat it up using the Joule effect, and in doing so cause the wire to transform from the martensite into the austenite. This phase transition has a non‐linear and hysteretic nature, so, finely controling wire's position requires a non trivial control strategy. A neural network used to compensate the hysteretic behaviour of the wire combined with proportional‐integral with antiwindup control strategy is implemented. Control experiments are carried out on a light robot gripper and on a single‐fingered experimental device. Findings – It is found that the single‐fingered device could be used to better analyze the behaviour of the gripper. It is also found that the accuracy obtainable strongly depended on the position sensor used for the feedback, ranging from 3 μ m for an linear variable differential transformer sensor to 30 μ m for strain gauges mounted on the “fingers” of the grip. Originality/value – This paper shows the viability of using SMA‐based actuators for lightweight applications, controllable with micrometric accuracies, without the need to place an extraordinarily large burden on the control system.
Assembly Automation – Emerald Publishing
Published: Jul 31, 2009
Keywords: Actuators; Alloys; Wires; Control technology
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.