Access the full text.
Sign up today, get DeepDyve free for 14 days.
The paper reports an investigation into the mechanical behaviour of hybrid components produced by combining the capabilities of metal injection moulding (MIM) with the laser-based powder bed fusion (PBF) process to produce small series of hybrid components. The research investigates systematically the mechanical properties and the performance of the MIM/PBF interfaces in such hybrid components.Design/methodology/approachThe MIM process is employed to fabricate relatively lower cost preforms in higher quantities, whereas the PBF technology is deployed to build on them sections that can be personalised, customised or functionalised to meet specific technical requirements.FindingsThe results are discussed, and conclusions are made about the mechanical performance of such hybrid components produced in batches and also about the production efficiency of the investigated hybrid manufacturing (HM) route. The obtained results show that the proposed HM route can produce hybrid MIM/PBF components with consistent mechanical properties and interface performance which comply with the American Society for Testing and Materials (ASTM) standards.Originality/valueThe manufacturing of hybrid components, especially by combining the capabilities of additive manufacturing processes with cost-effective complementary technologies, is designed to be exploited by industry because they can offer flexibility and cost advantages in producing small series of customisable products. The findings of this research will contribute to further develop the state of the art in regards to the manufacturing and optimisation of hybrid components.
Rapid Prototyping Journal – Emerald Publishing
Published: Nov 28, 2020
Keywords: Additive; PBF technology; Mechanical properties of materials; Additive manufacturing; Hybrid manufacturing; Combination of processes; Hybrid stainless steel components; Metal injection moulding
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.