Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Machine learning-based control charts for monitoring fraction nonconforming product in smart manufacturing

Machine learning-based control charts for monitoring fraction nonconforming product in smart... Process monitoring is a way to manage the quality characteristics of products in manufacturing processes. Several process monitoring based on machine learning algorithms have been proposed in the literature and have gained the attention of many researchers. In this paper, the authors developed machine learning-based control charts for monitoring fraction non-conforming products in smart manufacturing. This study proposed a relevance vector machine using Bayesian sparse kernel optimized by differential evolution algorithm for efficient monitoring in manufacturing.Design/methodology/approachA new approach was carried out about data analysis, modelling and monitoring in the manufacturing industry. This study developed a relevance vector machine using Bayesian sparse kernel technique to improve the support vector machine used to both regression and classification problems. The authors compared the performance of proposed relevance vector machine with other machine learning algorithms, such as support vector machine, artificial neural network and beta regression model. The proposed approach was evaluated by different shift scenarios of average run length using Monte Carlo simulation.FindingsThe authors analyse a real case study in a manufacturing company, based on best machine learning algorithms. The results indicate that proposed relevance vector machine-based process monitoring are excellent quality tools for monitoring defective products in manufacturing process. A comparative analysis with four machine learning models is used to evaluate the performance of the proposed approach. The relevance vector machine has slightly better performance than support vector machine, artificial neural network and beta models.Originality/valueThis research is different from the others by providing approaches for monitoring defective products. Machine learning-based control charts are used to monitor product failures in smart manufacturing process. Besides, the key contribution of this study is to develop different models for fault detection and to identify any change point in the manufacturing process. Moreover, the authors’ research indicates that machine learning models are adequate tools for the modelling and monitoring of the fraction non-conforming product in the industrial process. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png International Journal of Quality & Reliability Management Emerald Publishing

Machine learning-based control charts for monitoring fraction nonconforming product in smart manufacturing

Loading next page...
 
/lp/emerald-publishing/machine-learning-based-control-charts-for-monitoring-fraction-WBp4yDAiJ8

References (39)

Publisher
Emerald Publishing
Copyright
© Emerald Publishing Limited
ISSN
0265-671X
DOI
10.1108/ijqrm-07-2021-0210
Publisher site
See Article on Publisher Site

Abstract

Process monitoring is a way to manage the quality characteristics of products in manufacturing processes. Several process monitoring based on machine learning algorithms have been proposed in the literature and have gained the attention of many researchers. In this paper, the authors developed machine learning-based control charts for monitoring fraction non-conforming products in smart manufacturing. This study proposed a relevance vector machine using Bayesian sparse kernel optimized by differential evolution algorithm for efficient monitoring in manufacturing.Design/methodology/approachA new approach was carried out about data analysis, modelling and monitoring in the manufacturing industry. This study developed a relevance vector machine using Bayesian sparse kernel technique to improve the support vector machine used to both regression and classification problems. The authors compared the performance of proposed relevance vector machine with other machine learning algorithms, such as support vector machine, artificial neural network and beta regression model. The proposed approach was evaluated by different shift scenarios of average run length using Monte Carlo simulation.FindingsThe authors analyse a real case study in a manufacturing company, based on best machine learning algorithms. The results indicate that proposed relevance vector machine-based process monitoring are excellent quality tools for monitoring defective products in manufacturing process. A comparative analysis with four machine learning models is used to evaluate the performance of the proposed approach. The relevance vector machine has slightly better performance than support vector machine, artificial neural network and beta models.Originality/valueThis research is different from the others by providing approaches for monitoring defective products. Machine learning-based control charts are used to monitor product failures in smart manufacturing process. Besides, the key contribution of this study is to develop different models for fault detection and to identify any change point in the manufacturing process. Moreover, the authors’ research indicates that machine learning models are adequate tools for the modelling and monitoring of the fraction non-conforming product in the industrial process.

Journal

International Journal of Quality & Reliability ManagementEmerald Publishing

Published: Feb 24, 2023

Keywords: Statistical process control; Machine learning; Smart manufacturing; Non-conforming product

There are no references for this article.