Access the full text.
Sign up today, get DeepDyve free for 14 days.
Abnormal changes in temperature directly affect the stability and reliability of a gyroscope. Predicting the temperature and detecting the abnormal change is great value for timely understanding of the working state of the gyroscope. Considering that the actual collected gyroscope shell temperature data have strong non-linearity and are accompanied by random noise pollution, the prediction accuracy and convergence speed of the traditional method need to be improved. The purpose of this paper is to use a predictive model with strong nonlinear mapping ability to predict the temperature of the gyroscope to improve the prediction accuracy and detect the abnormal change.Design/methodology/approachIn this paper, an double hidden layer long-short term memory (LSTM) is presented to predict temperature data for the gyroscope (including single point and period prediction), and the evaluation index of the prediction effect is also proposed, and the prediction effects of shell temperature data are compared by BP network, support vector machine (SVM) and LSTM network. Using the estimated value detects the abnormal change of the gyroscope.FindingsBy combined simulation calculation with the gyroscope measured data, the effect of different network hyperparameters on shell temperature prediction of the gyroscope is analyzed, and the LSTM network can be used to predict the temperature (time series data). By comparing the performance indicators of different prediction methods, the accuracy of the shell temperature estimation by LSTM is better, which can meet the requirements of abnormal change detection. Quick and accurate diagnosis of different types of gyroscope faults (steps and drifts) can be achieved by setting reasonable data window lengths and thresholds.Practical implicationsThe LSTM model is a deep neural network model with multiple non-linear mapping levels, and can abstract the input signal layer by layer and extract features to discover deeper underlying laws. The improved method has been used to solve the problem of strong non-linearity and random noise pollution in time series, and the estimated value can detect the abnormal change of the gyroscope.Originality/valueIn this paper, based on the LSTM network, an double hidden layer LSTM is presented to predict temperature data for the gyroscope (including single point and period prediction), and validate the effectiveness and feasibility of the algorithm by using shell temperature measurement data. The prediction effects of shell temperature data are compared by BP network, SVM and LSTM network. The LSTM network has the best prediction effect, and is used to predict the temperature of the gyroscope to improve the prediction accuracy and detect the abnormal change.
International Journal of Intelligent Computing and Cybernetics – Emerald Publishing
Published: May 15, 2019
Keywords: Gyroscope; LSTM; Temperature prediction; Recurrent neural network; Abnormal change detection
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.