Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You and Your Team.

Learn More →

Low-power CMOS integrated current sensor for current-mode DC-DC buck converter

Low-power CMOS integrated current sensor for current-mode DC-DC buck converter PurposeThis paper aims to propose a low-power complementary MOS (CMOS) current sensor for control circuit in an integrated DC-DC buck converter.Design/methodology/approachThe integrated DC-DC converter, which is composed of feedback control circuit and power block, is designed with 0.35-µm CMOS process. Current sensor in the control circuit is integrated with sense-FET and voltage-follower circuits to reduce power consumption and improve its sensing accuracy. In the current-sensing circuit, the size ratio of the power metal oxide semiconductor field effect transistor (MOSFET) to the sensing transistor (K) is 1,000, and a current-mirror is used for a voltage follower. N-channel MOS acts as a switching device in the current-sensing circuit, where the sensing FET is in parallel with the power MOSFET. The amplifier and comparator are designed to obtain a high gain and a fast transient time.FindingsExperiment shows that the current sensor is operated with accuracy of more than 85 per cent, and the transient time of the error amplifier is controlled within 100 µs. The sensing current is in the range of a few hundred µA at a frequency of 0.6-2 MHz and an input voltage of 3-5 V. The output voltage is obtained as expected with the ripple ratio within 5 per cent.Originality/valueThe proposed current sensor in DC-DC converter provides an accurately sensed inductor current with a significant reduction in power consumption in the range of 0.2 mW. High-accuracy regulation is obtained using the proposed current sensor. As the sensor utilizes simple switch-type voltage follower and sense-FET, it can be widely applied to other low-power applications such as high-frequency oscillator and over-current protection circuit. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Microelectronics International Emerald Publishing

Low-power CMOS integrated current sensor for current-mode DC-DC buck converter

Loading next page...
 
/lp/emerald-publishing/low-power-cmos-integrated-current-sensor-for-current-mode-dc-dc-buck-aWVE0bzSLX
Publisher
Emerald Publishing
Copyright
Copyright © Emerald Group Publishing Limited
ISSN
1356-5362
DOI
10.1108/MI-07-2017-0035
Publisher site
See Article on Publisher Site

Abstract

PurposeThis paper aims to propose a low-power complementary MOS (CMOS) current sensor for control circuit in an integrated DC-DC buck converter.Design/methodology/approachThe integrated DC-DC converter, which is composed of feedback control circuit and power block, is designed with 0.35-µm CMOS process. Current sensor in the control circuit is integrated with sense-FET and voltage-follower circuits to reduce power consumption and improve its sensing accuracy. In the current-sensing circuit, the size ratio of the power metal oxide semiconductor field effect transistor (MOSFET) to the sensing transistor (K) is 1,000, and a current-mirror is used for a voltage follower. N-channel MOS acts as a switching device in the current-sensing circuit, where the sensing FET is in parallel with the power MOSFET. The amplifier and comparator are designed to obtain a high gain and a fast transient time.FindingsExperiment shows that the current sensor is operated with accuracy of more than 85 per cent, and the transient time of the error amplifier is controlled within 100 µs. The sensing current is in the range of a few hundred µA at a frequency of 0.6-2 MHz and an input voltage of 3-5 V. The output voltage is obtained as expected with the ripple ratio within 5 per cent.Originality/valueThe proposed current sensor in DC-DC converter provides an accurately sensed inductor current with a significant reduction in power consumption in the range of 0.2 mW. High-accuracy regulation is obtained using the proposed current sensor. As the sensor utilizes simple switch-type voltage follower and sense-FET, it can be widely applied to other low-power applications such as high-frequency oscillator and over-current protection circuit.

Journal

Microelectronics InternationalEmerald Publishing

Published: Apr 3, 2018

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$499/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month