Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Lorentz force eddy current testing: a novel NDE-technique

Lorentz force eddy current testing: a novel NDE-technique Purpose – The purpose of this paper is to present a novel electromagnetic non-destructive evaluation technique, so called Lorentz force eddy current testing (LET). This method can be applied for the detection and reconstruction of defects lying deep inside a non-magnetic conducting material. Design/methodology/approach – In this paper the technique is described in general as well as its experimental realization. Besides that, numerical simulations are performed and compared to experimental data. Using the output data of measurements and simulations, an inverse calculation is performed in order to reconstruct the geometry of a defect by means of sophisticated optimization algorithms. Findings – The results show that measurement data and numerical simulations are in a good agreement. The applied inverse calculation methods allow to reconstruct the dimensions of the defect in a suitable accuracy. Originality/value – LET overcomes the frequency dependent skin-depth of traditional eddy current testing due to the use of permanent magnets and low to moderate magnetic Reynolds numbers (0.1-1). This facilitates the possibility to detect subsurface defects in conductive materials. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering Emerald Publishing

Loading next page...
 
/lp/emerald-publishing/lorentz-force-eddy-current-testing-a-novel-nde-technique-0rxIK9FBqa
Publisher
Emerald Publishing
Copyright
Copyright © Emerald Group Publishing Limited
ISSN
0332-1649
DOI
10.1108/COMPEL-11-2013-0383
Publisher site
See Article on Publisher Site

Abstract

Purpose – The purpose of this paper is to present a novel electromagnetic non-destructive evaluation technique, so called Lorentz force eddy current testing (LET). This method can be applied for the detection and reconstruction of defects lying deep inside a non-magnetic conducting material. Design/methodology/approach – In this paper the technique is described in general as well as its experimental realization. Besides that, numerical simulations are performed and compared to experimental data. Using the output data of measurements and simulations, an inverse calculation is performed in order to reconstruct the geometry of a defect by means of sophisticated optimization algorithms. Findings – The results show that measurement data and numerical simulations are in a good agreement. The applied inverse calculation methods allow to reconstruct the dimensions of the defect in a suitable accuracy. Originality/value – LET overcomes the frequency dependent skin-depth of traditional eddy current testing due to the use of permanent magnets and low to moderate magnetic Reynolds numbers (0.1-1). This facilitates the possibility to detect subsurface defects in conductive materials.

Journal

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic EngineeringEmerald Publishing

Published: Oct 28, 2014

There are no references for this article.