Access the full text.
Sign up today, get DeepDyve free for 14 days.
PurposeThe purpose of this paper is to examine outcome of activation energy in rotating flow of an Oldroyd-B nano liquid.Design/methodology/approachFlow is generated due to stretched surface. Binary chemical reaction is studied. Brownian and thermophoresis effects are considered. The system of nonlinear ordinary differential equations is derived. Convergent series solutions are obtained by homotopy analysis method. The resulting expressions for velocities, temperature and concentration are computed for different embedded parameters.FindingsIt is found that velocities f′ and g have decreasing effect when rotation parameter is enhanced. Brownian and thermophoresis are increasing functions of temperature and concentration. The physical quantities are sketched and discussed numerically. Concentration and temperature fields show decreasing behavior via Brownian and thermophoresis parameters.Originality/valueAuthors investigate the Rotating flow of Oldroyd-B nano fluid with chemical reactions. This work is not done yet in literature.
International Journal of Numerical Methods for Heat & Fluid Flow – Emerald Publishing
Published: Aug 5, 2019
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.