Liquid drop breakup in homogeneous isotropic turbulence

Liquid drop breakup in homogeneous isotropic turbulence PurposeThis paper aims to demonstrate the capabilities of a diffuse interface free energy lattice Boltzmann method to perform direct numerical simulations of liquid–liquid dispersions in a well-controlled turbulent environment. The goal of this research study is to develop numerical techniques that can visualize and quantify drop interaction with the turbulent vortices. The obtained information will be used for the development of sub-models of drop breakup for multi-scale simulations.Design/methodology/approachA pure binary liquid system is considered that is subject to fully developed statistically stationary turbulent flow field in a cubic fully periodic box with the edge size of 300 lattice units. Three turbulent flow fields with varying energy input are examined and their coherent structures are visualized using a normalized Q-criterion. The evolution of the liquid–liquid interface is tracked as a function of time. The detailed explanation of the numerical method is provided with a highlight on a choice of the numerical parameters.FindingsDrop breakup mechanisms differ depending on energy input. Drops break due to interaction with the vortices. Quantification of turbulent structures shows that the size of vortices increases with the decrease of energy input. Drop interacts simultaneously with multiple vortices of the size comparable to or smaller than the drop size. Vortices of the size smaller than the drop size disturb drop interface and pinch off the satellites. Vortices of the size comparable to the drop size tend to elongate the drop and tear it apart producing daughter drops and satellites. Addition of the second phase enhances turbulent dissipation at the high wavenumbers. To obtain physically realistic two-phase energy spectra, the multiple-relaxation-time collision operator should be used.Originality/valueDetailed information of drop breakup in the turbulent flow field is crucial for the development of drop breakup sub-models that are necessary for multi-scale numerical simulations. The improvement of numerical methods that can provide these data and produce reliable results is important. This work made one step towards a better understanding of how drops interact with the turbulent vortices. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png International Journal of Numerical Methods for Heat & Fluid Flow Emerald Publishing

Loading next page...
 
/lp/emerald-publishing/liquid-drop-breakup-in-homogeneous-isotropic-turbulence-TTCbCTvLjL
Publisher
Emerald Publishing
Copyright
Copyright © Emerald Group Publishing Limited
ISSN
0961-5539
DOI
10.1108/HFF-09-2018-0490
Publisher site
See Article on Publisher Site

Abstract

PurposeThis paper aims to demonstrate the capabilities of a diffuse interface free energy lattice Boltzmann method to perform direct numerical simulations of liquid–liquid dispersions in a well-controlled turbulent environment. The goal of this research study is to develop numerical techniques that can visualize and quantify drop interaction with the turbulent vortices. The obtained information will be used for the development of sub-models of drop breakup for multi-scale simulations.Design/methodology/approachA pure binary liquid system is considered that is subject to fully developed statistically stationary turbulent flow field in a cubic fully periodic box with the edge size of 300 lattice units. Three turbulent flow fields with varying energy input are examined and their coherent structures are visualized using a normalized Q-criterion. The evolution of the liquid–liquid interface is tracked as a function of time. The detailed explanation of the numerical method is provided with a highlight on a choice of the numerical parameters.FindingsDrop breakup mechanisms differ depending on energy input. Drops break due to interaction with the vortices. Quantification of turbulent structures shows that the size of vortices increases with the decrease of energy input. Drop interacts simultaneously with multiple vortices of the size comparable to or smaller than the drop size. Vortices of the size smaller than the drop size disturb drop interface and pinch off the satellites. Vortices of the size comparable to the drop size tend to elongate the drop and tear it apart producing daughter drops and satellites. Addition of the second phase enhances turbulent dissipation at the high wavenumbers. To obtain physically realistic two-phase energy spectra, the multiple-relaxation-time collision operator should be used.Originality/valueDetailed information of drop breakup in the turbulent flow field is crucial for the development of drop breakup sub-models that are necessary for multi-scale numerical simulations. The improvement of numerical methods that can provide these data and produce reliable results is important. This work made one step towards a better understanding of how drops interact with the turbulent vortices.

Journal

International Journal of Numerical Methods for Heat & Fluid FlowEmerald Publishing

Published: Jul 1, 2019

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off