Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

LIDAR altimeter conception for HERA spacecraft

LIDAR altimeter conception for HERA spacecraft This paper aims to report the first iteration on the Light Detection and Ranging (LIDAR) Engineering Model altimeter named HELENA. HELENA is a Time of Flight (TOF) altimeter that provides time-tagged distances and velocity measurements. The LIDAR can be used for support near asteroid navigation and provides scientific information. The HELENA design comprises two types of technologies: a microchip laser and low noise sensor. The synergies between these two technologies enable developing a compact instrument for range measurements of up to 14 km. Thermal-mechanical and radiometric simulations of the HELENA telescope are reported in this paper. The design is subjected to vibrational, static and thermal conditions, and it was possible to conclude by the results that the telescope is compliant with the random vibration levels, the static load and the operating temperatures.Design/methodology/approachThe Asteroid Impact & Deflection Assessment (AIDA) is a collaboration between the NASA DART mission and ESA Hera mission. The aim scope is to study the asteroid deflection through a kinetic collision. DART spacecraft will collide with Didymos-B, while ground stations monitor the orbit change. HERA spacecraft will study the post-impact scenario. The HERA spacecraft is composed by a main spacecraft and two small CubeSats. HERA will monitor the asteroid through cameras, radar, satellite-to-satellite doppler tracking, LIDAR, seismometry and gravimetry.FindingsThe HELENA design comprises two types of technologies: a microchip laser and low noise sensor. The synergies between these two technologies enable developing a compact instrument for range measurements of up to 14 km.Originality/valueIn this paper is reported the first iteration on the LIDAR Engineering Model altimeter named HELENA. HELENA is a TOF altimeter that provides time-tagged distances and velocity measurements. The LIDAR can be used for support near asteroid navigation and provides scientific information. The HELENA design comprises two types of technologies: a microchip laser and low noise sensor. The synergies between these two technologies enable developing a compact instrument for range measurements of up to 14 km. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Aircraft Engineering and Aerospace Technology Emerald Publishing

Loading next page...
 
/lp/emerald-publishing/lidar-altimeter-conception-for-hera-spacecraft-ONm3aFYykf
Publisher
Emerald Publishing
Copyright
© Emerald Publishing Limited
ISSN
1748-8842
DOI
10.1108/aeat-12-2020-0300
Publisher site
See Article on Publisher Site

Abstract

This paper aims to report the first iteration on the Light Detection and Ranging (LIDAR) Engineering Model altimeter named HELENA. HELENA is a Time of Flight (TOF) altimeter that provides time-tagged distances and velocity measurements. The LIDAR can be used for support near asteroid navigation and provides scientific information. The HELENA design comprises two types of technologies: a microchip laser and low noise sensor. The synergies between these two technologies enable developing a compact instrument for range measurements of up to 14 km. Thermal-mechanical and radiometric simulations of the HELENA telescope are reported in this paper. The design is subjected to vibrational, static and thermal conditions, and it was possible to conclude by the results that the telescope is compliant with the random vibration levels, the static load and the operating temperatures.Design/methodology/approachThe Asteroid Impact & Deflection Assessment (AIDA) is a collaboration between the NASA DART mission and ESA Hera mission. The aim scope is to study the asteroid deflection through a kinetic collision. DART spacecraft will collide with Didymos-B, while ground stations monitor the orbit change. HERA spacecraft will study the post-impact scenario. The HERA spacecraft is composed by a main spacecraft and two small CubeSats. HERA will monitor the asteroid through cameras, radar, satellite-to-satellite doppler tracking, LIDAR, seismometry and gravimetry.FindingsThe HELENA design comprises two types of technologies: a microchip laser and low noise sensor. The synergies between these two technologies enable developing a compact instrument for range measurements of up to 14 km.Originality/valueIn this paper is reported the first iteration on the LIDAR Engineering Model altimeter named HELENA. HELENA is a TOF altimeter that provides time-tagged distances and velocity measurements. The LIDAR can be used for support near asteroid navigation and provides scientific information. The HELENA design comprises two types of technologies: a microchip laser and low noise sensor. The synergies between these two technologies enable developing a compact instrument for range measurements of up to 14 km.

Journal

Aircraft Engineering and Aerospace TechnologyEmerald Publishing

Published: Aug 12, 2021

Keywords: LIDAR; Aerospace; Dydimos asteroid; HERA mission; Opto-mechanical design

References