Lead‐free alloys

Lead‐free alloys In recent years, efforts to develop alternatives to lead‐based solders have increased dramatically. These efforts began as a response to potential legislation and regulations restricting lead usage in the electronics industry. Lead is extremely toxic when inhaled or ingested. As researchers began to focus on Pb‐free solders, they recognized their value in high temperature applications (e.g. automotive manufacturing) where Sn/Pb solders do not meet the requirements. There are many factors to consider when developing lead‐free alloys: manufacturability, availability, reliability, cost and environmental safety. Of these, the most challenging and time consuming is the reliability of alternative solders. The lead‐free alloys available cannot be used as a drop‐in replacement for the SnPb or SnPbAg. The introduction of lead‐free solder alloys may mean having to use alternative component and PCB metallizations, PCB materials, solder fluxes, etc. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Soldering & Surface Mount Technology Emerald Publishing

Loading next page...
 
/lp/emerald-publishing/lead-free-alloys-mHRveAbj94
Publisher
Emerald Publishing
Copyright
none
ISSN
0954-0911
DOI
10.1108/09540919810203793
Publisher site
See Article on Publisher Site

Abstract

In recent years, efforts to develop alternatives to lead‐based solders have increased dramatically. These efforts began as a response to potential legislation and regulations restricting lead usage in the electronics industry. Lead is extremely toxic when inhaled or ingested. As researchers began to focus on Pb‐free solders, they recognized their value in high temperature applications (e.g. automotive manufacturing) where Sn/Pb solders do not meet the requirements. There are many factors to consider when developing lead‐free alloys: manufacturability, availability, reliability, cost and environmental safety. Of these, the most challenging and time consuming is the reliability of alternative solders. The lead‐free alloys available cannot be used as a drop‐in replacement for the SnPb or SnPbAg. The introduction of lead‐free solder alloys may mean having to use alternative component and PCB metallizations, PCB materials, solder fluxes, etc.

Journal

Soldering & Surface Mount TechnologyEmerald Publishing

Published: Apr 1, 1998

Keywords: Environment; Lead‐free soldering; Legislation; Temperature

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off