Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Lattice Boltzmann simulation of convective flow and heat transfer in a nanofluid-filled hollow cavity

Lattice Boltzmann simulation of convective flow and heat transfer in a nanofluid-filled hollow... PurposeThis paper aims to to simulate the flow and heat transfer during free convection in a square cavity using double-multi-relaxation time (MRT) lattice Boltzmann method.Design/methodology/approachThe double-MRT lattice Boltzmann method is used, and the natural convection fluid flow and heat transfer under influence of different parameters are analyzed. The D2Q5 model and D2Q9 model are used for simulation of temperature field and flow field, respectively. The cavity is filled with CuO-water nanofluid; in addition, the thermo-physical properties of nanofluid and the effect of nanoparticles’ shapes are considered using Koo–Kleinstreuer–Li (KKL) model. On the other hand, the cavity is included with an internal active hollow with constant thermal boundary conditions at its walls and variable dimensions. It should be noted that the dimensions of the internal hollow will be determined by as aspect ratio.FindingsThe Rayleigh number, nanoparticle concentration and the aspect ratio are the governing parameters. The heat transfer performance of the cavity has direct relationship with the Rayleigh number and solid volume fraction of CuO-water nanofluid. Moreover, the configuration of the cavity is good controlling factor for changing the heat transfer performance and entropy generation.Originality/valueThe originality of this work is using double-MRT lattice Boltzmann method in simulating the free convection fluid flow and heat transfer. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png International Journal of Numerical Methods for Heat & Fluid Flow Emerald Publishing

Lattice Boltzmann simulation of convective flow and heat transfer in a nanofluid-filled hollow cavity

Loading next page...
 
/lp/emerald-publishing/lattice-boltzmann-simulation-of-convective-flow-and-heat-transfer-in-a-6bFlyxFdly
Publisher
Emerald Publishing
Copyright
Copyright © Emerald Group Publishing Limited
ISSN
0961-5539
DOI
10.1108/HFF-12-2018-0809
Publisher site
See Article on Publisher Site

Abstract

PurposeThis paper aims to to simulate the flow and heat transfer during free convection in a square cavity using double-multi-relaxation time (MRT) lattice Boltzmann method.Design/methodology/approachThe double-MRT lattice Boltzmann method is used, and the natural convection fluid flow and heat transfer under influence of different parameters are analyzed. The D2Q5 model and D2Q9 model are used for simulation of temperature field and flow field, respectively. The cavity is filled with CuO-water nanofluid; in addition, the thermo-physical properties of nanofluid and the effect of nanoparticles’ shapes are considered using Koo–Kleinstreuer–Li (KKL) model. On the other hand, the cavity is included with an internal active hollow with constant thermal boundary conditions at its walls and variable dimensions. It should be noted that the dimensions of the internal hollow will be determined by as aspect ratio.FindingsThe Rayleigh number, nanoparticle concentration and the aspect ratio are the governing parameters. The heat transfer performance of the cavity has direct relationship with the Rayleigh number and solid volume fraction of CuO-water nanofluid. Moreover, the configuration of the cavity is good controlling factor for changing the heat transfer performance and entropy generation.Originality/valueThe originality of this work is using double-MRT lattice Boltzmann method in simulating the free convection fluid flow and heat transfer.

Journal

International Journal of Numerical Methods for Heat & Fluid FlowEmerald Publishing

Published: Sep 2, 2019

References