Access the full text.
Sign up today, get DeepDyve free for 14 days.
References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.
IN recent years much attention has been devoted to devising methods for the numerical solution of Lagrangian frequency equations in practical problems. A powerful method based on iteration was given by Duncan and Collar in the Phil. Mag. for May, 1934. This method, which was described by one of the present authors in AIRCRAFT ENGINEERING, Vol. XIV, April, 1942, pp. 108110, is essentially one of successive approximation and lias the advantage of simultancously giving the modes associated with the frequencies. First the highest root is found together with its associated modes. Then by an ingenious artifice the equations are reduced by one degree being freed from the root found and so on. A defect of the method is due to the fact that the accuracy diminishes with each successive root. Consequently it becomes necessary to start the computation with a large number of significant figures in order to achieve the requisite accuracy as the number of roots to be found increases. There is another drawback to the method in that it cannot be applied to the general Lagrangian equations direct. They have first to be recast into canonical form in which the root to be found appears only along the leading diagonal. This involves solutions of simultaneous equations with the same number of variables as the number of roots in the original equations.
Aircraft Engineering and Aerospace Technology – Emerald Publishing
Published: Nov 1, 1942
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.