Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You and Your Team.

Learn More →

Kinematic characterisation of hexapods for industry

Kinematic characterisation of hexapods for industry Purpose – The purpose of this paper is to propose two simple tools for the kinematic characterization of hexapods. The paper also aims to share the experience of converting a popular commercial motion base (Stewart‐Gough platform, hexapod) to an industrial robot for use in heavy duty aerospace manufacturing processes. Design/methodology/approach – The complete workspace of a hexapod is a six‐dimensional entity that is impossible to visualize. Thus, nearly all hexapod manufacturers simply state the extrema of each of the six dimensions, which is very misleading. As a compromise, a special 3D subset of the complete workspace is proposed, an approximation of which can be readily obtained using a computer‐aided design (CAD)/computer‐aided manufacturing (CAM) software suite, such as computer‐aided 3D interactive application (CATIA). While calibration techniques for serial robots are readily available, there is still no generally agreed procedure for calibrating hexapods. The paper proposes a simple calibration method that relies on the use of a laser tracker and requires no programming at all. Instead, the design parameters of the hexapod are directly and individually measured and the few computations involved are performed in a CAD/CAM software such as CATIA. Findings – The conventional octahedral hexapod design has a very limited workspace, though free of singularities. There are important deviations between the actual and the specified kinematic model in a commercial motion base. Practical implications – A commercial motion base can be used as a precision positioning device with its controller retrofitted with state‐of‐the‐art motion control technology with accurate workspace and geometric characteristics. Originality/value – A novel geometric approach for obtaining meaningful measures of the workspace is proposed. A novel, systematic procedure for the calibration of a hexapod is outlined. Finally, experimental results are presented and discussed. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Industrial Robot: An International Journal Emerald Publishing

Loading next page...
 
/lp/emerald-publishing/kinematic-characterisation-of-hexapods-for-industry-Nut67RD1aF
Publisher
Emerald Publishing
Copyright
Copyright © 2010 Emerald Group Publishing Limited. All rights reserved.
ISSN
0143-991X
DOI
10.1108/01439911011009984
Publisher site
See Article on Publisher Site

Abstract

Purpose – The purpose of this paper is to propose two simple tools for the kinematic characterization of hexapods. The paper also aims to share the experience of converting a popular commercial motion base (Stewart‐Gough platform, hexapod) to an industrial robot for use in heavy duty aerospace manufacturing processes. Design/methodology/approach – The complete workspace of a hexapod is a six‐dimensional entity that is impossible to visualize. Thus, nearly all hexapod manufacturers simply state the extrema of each of the six dimensions, which is very misleading. As a compromise, a special 3D subset of the complete workspace is proposed, an approximation of which can be readily obtained using a computer‐aided design (CAD)/computer‐aided manufacturing (CAM) software suite, such as computer‐aided 3D interactive application (CATIA). While calibration techniques for serial robots are readily available, there is still no generally agreed procedure for calibrating hexapods. The paper proposes a simple calibration method that relies on the use of a laser tracker and requires no programming at all. Instead, the design parameters of the hexapod are directly and individually measured and the few computations involved are performed in a CAD/CAM software such as CATIA. Findings – The conventional octahedral hexapod design has a very limited workspace, though free of singularities. There are important deviations between the actual and the specified kinematic model in a commercial motion base. Practical implications – A commercial motion base can be used as a precision positioning device with its controller retrofitted with state‐of‐the‐art motion control technology with accurate workspace and geometric characteristics. Originality/value – A novel geometric approach for obtaining meaningful measures of the workspace is proposed. A novel, systematic procedure for the calibration of a hexapod is outlined. Finally, experimental results are presented and discussed.

Journal

Industrial Robot: An International JournalEmerald Publishing

Published: Jan 12, 2010

Keywords: Calibration; Aerospace industry; Kinematics; Robotics

References

  • Vision‐based kinematic calibration of an H4 parallel mechanism: practical accuracies
    Andreff, N.; Renaud, P.; Martinet, P.; Pierrot, F.
  • Orientation workspace analysis of 6‐DOF parallel manipulators
    Bonev, I.A.; Ryu, J.
  • Determination of the maximal singularity‐free zones in the six‐dimensional workspace of the general Gough‐Stewart platform
    Li, H.; Gosselin, C.M.; Richard, M.J.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$499/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month