Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Joint optimization decision of service provider selection and CODP positioning based on mass customization in a cloud logistics environment

Joint optimization decision of service provider selection and CODP positioning based on mass... By introducing the mass customization service mode into the cloud logistics environment, this paper studies the joint optimization of service provider selection and customer order decoupling point (CODP) positioning based on the mass customization service mode to provide customers with more diversified and personalized service content with lower total logistics service cost.Design/methodology/approachThis paper addresses the general process of service composition optimization based on the mass customization mode in a cloud logistics service environment and constructs a joint decision model for service provider selection and CODP positioning. In the model, the two objective functions of minimum service cost and most satisfactory delivery time are considered, and the Pareto optimal solution of the model is obtained via the NSGA-II algorithm. Then, a numerical case is used to verify the superiority of the service composition scheme based on the mass customization mode over the general scheme and to verify the significant impact of the scale effect coefficient on the optimal CODP location.Findings(1) Under the cloud logistics mode, the implementation of the logistics service mode based on mass customization can not only reduce the total cost of logistics services by means of the scale effect of massive orders on the cloud platform but also make more efficient use of a large number of logistics service providers gathered on the cloud platform to provide customers with more customized and diversified service content. (2) The scale effect coefficient directly affects the total cost of logistics services and significantly affects the location of the CODP. Therefore, before implementing the mass customization logistics service mode, the most reasonable clustering of orders on the cloud logistics platform is very important for the follow-up service combination.Originality/valueThe originality of this paper includes two aspects. One is to introduce the mass customization mode in the cloud logistics service environment for the first time and summarize the operation process of implementing the mass customization mode in the cloud logistics environment. Second, in order to solve the joint decision optimization model of provider selection and CODP positioning, this paper designs a method for solving a mixed-integer nonlinear programming model using a multi-layer coding genetic algorithm. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Kybernetes Emerald Publishing

Joint optimization decision of service provider selection and CODP positioning based on mass customization in a cloud logistics environment

Kybernetes , Volume 53 (4): 23 – Mar 13, 2024

Loading next page...
 
/lp/emerald-publishing/joint-optimization-decision-of-service-provider-selection-and-codp-gZ0Dpd9w55

References (62)

Publisher
Emerald Publishing
Copyright
© Emerald Publishing Limited
ISSN
0368-492X
DOI
10.1108/k-04-2022-0642
Publisher site
See Article on Publisher Site

Abstract

By introducing the mass customization service mode into the cloud logistics environment, this paper studies the joint optimization of service provider selection and customer order decoupling point (CODP) positioning based on the mass customization service mode to provide customers with more diversified and personalized service content with lower total logistics service cost.Design/methodology/approachThis paper addresses the general process of service composition optimization based on the mass customization mode in a cloud logistics service environment and constructs a joint decision model for service provider selection and CODP positioning. In the model, the two objective functions of minimum service cost and most satisfactory delivery time are considered, and the Pareto optimal solution of the model is obtained via the NSGA-II algorithm. Then, a numerical case is used to verify the superiority of the service composition scheme based on the mass customization mode over the general scheme and to verify the significant impact of the scale effect coefficient on the optimal CODP location.Findings(1) Under the cloud logistics mode, the implementation of the logistics service mode based on mass customization can not only reduce the total cost of logistics services by means of the scale effect of massive orders on the cloud platform but also make more efficient use of a large number of logistics service providers gathered on the cloud platform to provide customers with more customized and diversified service content. (2) The scale effect coefficient directly affects the total cost of logistics services and significantly affects the location of the CODP. Therefore, before implementing the mass customization logistics service mode, the most reasonable clustering of orders on the cloud logistics platform is very important for the follow-up service combination.Originality/valueThe originality of this paper includes two aspects. One is to introduce the mass customization mode in the cloud logistics service environment for the first time and summarize the operation process of implementing the mass customization mode in the cloud logistics environment. Second, in order to solve the joint decision optimization model of provider selection and CODP positioning, this paper designs a method for solving a mixed-integer nonlinear programming model using a multi-layer coding genetic algorithm.

Journal

KybernetesEmerald Publishing

Published: Mar 13, 2024

Keywords: Cloud logistics; Mass customization; Service composition and optimal selection; CODP position

There are no references for this article.