Job scheduling in the Expert Cloud based on genetic algorithms

Job scheduling in the Expert Cloud based on genetic algorithms Purpose – Expert Cloud as a new class of Cloud computing systems enables its users to request the skill, knowledge and expertise of people by employing internet infrastructures and Cloud computing concepts without any information of their location. Job scheduling is one of the most important issue in Expert Cloud and impacts on its efficiency and customer satisfaction. The purpose of this paper is to propose an applicable method based on genetic algorithm for job scheduling in Expert Cloud. Design/methodology/approach – Because of the nature of the scheduling issue as a NP-Hard problem and the success of genetic algorithm in optimization and NP-Hard problems, the authors used a genetic algorithm to schedule the jobs on human resources in Expert Cloud. In this method, chromosome or candidate solutions are represented by a vector; fitness function is calculated based on response time; one point crossover and swap mutation are also used. Findings – The results indicate that the proposed method can schedule the received jobs in appropriate time with high accuracy in comparison to common methods (First Come First Served, Shortest Process Next and Highest Response Ratio Next). Also the proposed method has better performance in term of total execution time, service+wait time, failure rate and Human Resource utilization rate in comparison to common methods. Originality/value – In this paper the job scheduling issue in Expert Cloud is pointed out and the approach to resolve the problem is applied into a practical example. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Kybernetes Emerald Publishing

Job scheduling in the Expert Cloud based on genetic algorithms

Loading next page...
 
/lp/emerald-publishing/job-scheduling-in-the-expert-cloud-based-on-genetic-algorithms-gQJu7dQKeE
Publisher
Emerald Publishing
Copyright
Copyright © Emerald Group Publishing Limited
ISSN
0368-492X
DOI
10.1108/K-02-2013-0018
Publisher site
See Article on Publisher Site

Abstract

Purpose – Expert Cloud as a new class of Cloud computing systems enables its users to request the skill, knowledge and expertise of people by employing internet infrastructures and Cloud computing concepts without any information of their location. Job scheduling is one of the most important issue in Expert Cloud and impacts on its efficiency and customer satisfaction. The purpose of this paper is to propose an applicable method based on genetic algorithm for job scheduling in Expert Cloud. Design/methodology/approach – Because of the nature of the scheduling issue as a NP-Hard problem and the success of genetic algorithm in optimization and NP-Hard problems, the authors used a genetic algorithm to schedule the jobs on human resources in Expert Cloud. In this method, chromosome or candidate solutions are represented by a vector; fitness function is calculated based on response time; one point crossover and swap mutation are also used. Findings – The results indicate that the proposed method can schedule the received jobs in appropriate time with high accuracy in comparison to common methods (First Come First Served, Shortest Process Next and Highest Response Ratio Next). Also the proposed method has better performance in term of total execution time, service+wait time, failure rate and Human Resource utilization rate in comparison to common methods. Originality/value – In this paper the job scheduling issue in Expert Cloud is pointed out and the approach to resolve the problem is applied into a practical example.

Journal

KybernetesEmerald Publishing

Published: Aug 26, 2014

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off