Iron loss simulation using a local material model

Iron loss simulation using a local material model PurposeThe cutting process of the electric machine laminations causes residual mechanical stress in the soft magnetic material. A local magnetic deterioration can be observed and the resulting local and global iron losses increase. A continuous local material model for the consideration of the changing magnetization properties has been introduced in a previous work as well as an a priori assessment of iron losses. A local iron loss calculation considering both a local magnetization and local loss parameters misses yet. The purpose of this study is to introduce a local iron loss calculation model considering both a local magnetization and local loss parameters.Design/methodology/approachIn this paper, an approach for local iron loss simulation is developed and a comparison to the cut-edge length-dependent loss model is given. The comparison includes local loss distribution in the lamination as well as the impact on the overall motor efficiency and vehicle range in an electric vehicle driving cycle.FindingsFor an analysis of the resulting local iron loss components, both the local magnetization and iron loss parameters must be considered using physically based models. Consistently, a local iron loss model is presented in the work. The developed model can be used to gain detailed information of the local loss distribution inside the machine. The comparability of this local iron loss with the cut-edge length approach for overall system characteristics, e.g. efficiency or driving range, is shown.Originality/valueA local iron loss simulation approach is a physical accurate model to describe the influence of cutting techniques on electric machine characteristics. A comparison with the less complicated a priori assessment gives detailed information about the necessity of the local model under consideration of the given problem. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png COMPEL: Theinternational Journal for Computation and Mathematics in Electrical and Electronic Engineering Emerald Publishing

Loading next page...
 
/lp/emerald-publishing/iron-loss-simulation-using-a-local-material-model-koSMDS0m05
Publisher
Emerald Publishing
Copyright
Copyright © Emerald Group Publishing Limited
ISSN
0332-1649
D.O.I.
10.1108/COMPEL-10-2018-0421
Publisher site
See Article on Publisher Site

Abstract

PurposeThe cutting process of the electric machine laminations causes residual mechanical stress in the soft magnetic material. A local magnetic deterioration can be observed and the resulting local and global iron losses increase. A continuous local material model for the consideration of the changing magnetization properties has been introduced in a previous work as well as an a priori assessment of iron losses. A local iron loss calculation considering both a local magnetization and local loss parameters misses yet. The purpose of this study is to introduce a local iron loss calculation model considering both a local magnetization and local loss parameters.Design/methodology/approachIn this paper, an approach for local iron loss simulation is developed and a comparison to the cut-edge length-dependent loss model is given. The comparison includes local loss distribution in the lamination as well as the impact on the overall motor efficiency and vehicle range in an electric vehicle driving cycle.FindingsFor an analysis of the resulting local iron loss components, both the local magnetization and iron loss parameters must be considered using physically based models. Consistently, a local iron loss model is presented in the work. The developed model can be used to gain detailed information of the local loss distribution inside the machine. The comparability of this local iron loss with the cut-edge length approach for overall system characteristics, e.g. efficiency or driving range, is shown.Originality/valueA local iron loss simulation approach is a physical accurate model to describe the influence of cutting techniques on electric machine characteristics. A comparison with the less complicated a priori assessment gives detailed information about the necessity of the local model under consideration of the given problem.

Journal

COMPEL: Theinternational Journal for Computation and Mathematics in Electrical and Electronic EngineeringEmerald Publishing

Published: Jul 1, 2019

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off