IOT system environmental monitoring using IPSO weight factor estimation

IOT system environmental monitoring using IPSO weight factor estimation Purpose – This study aims to analyze the inertial weight factor value in the (PSO) algorithm and propose non‐linear weights with decreasing strategy to implement the improved PSO (IPSO) algorithm. Using various types of sensors, combined with ZigBee wireless sensor networks and the TCP/IP network. The GPRS/SMS long‐range wireless network will sense the measured data analysis and evaluation to create more effective monitoring and observation in a regional environment to achieve an Internet of Things with automated information exchange between persons and things. Design/methodology/approach – This study proposes a wireless sensor network system using ZigBee (PSoC‐1605A) chip, sensor and circuit boards to constitute the IOT system. The IOT system consists of a main coordinator (PSoC‐1605A), smart grid monitoring system, robotic arm detection warning system and temperature and humidity sensor network. The hardware components communicate with each other through wireless transmission. Each node collects data and sends messages to other objects in the network. Findings – This study employed IPSO to perform information fusion in a multi‐sensor network. The paper shows that IPSO improved the measurement preciseness via weight factors estimated via experimental simulations. The experimental results show that the IPSO algorithm optimally integrates the weight factors, information source fusion reliability, information redundancy and hierarchical structure integration in uncertain fusion cases. The sensor data approximates the optimal way to extract useful information from each fusion data and successfully eliminates noise interference, producing excellent fusion results. Practical implications – Robotic arm to tilt detection warning system: Several geographic areas are susceptible to severe tectonic plate movement, often generating earthquakes. Earthquakes cause great harm to public infrastructure, and a great threat to high‐tech, high‐precision machinery and production lines. To minimize the extent of earthquake disasters and allow managers to deal with power failures, vibration monitoring system construction can enhance manufacturing process quality and stability. Smart grid monitoring system: The greenhouse effect, global energy shortage and rising cost of traditional energy are related energy efficiency topics that have attracted much attention. The aim of this paper is that real‐time data rendering and analysis can be more effective in understanding electrical energy usage, resulting in a reduction in unnecessary consumption and waste. Temperature and humidity sensor network system: Environmental temperature and humidity monitoring and application of a wide range of precision industrial production lines, laboratories, antique works of art that have a higher standard of environmental temperature and humidity requirements. The environment has a considerable influence on biological lifeforms. The relative importance of environmental management and monitoring is acute. Originality/value – This paper improves the fixed inertial weight of the original particle swarm optimization (PSO) algorithm. An illustration in the paper indicates that IPSO applies the Internet of Things (IOT) system in monitoring a system via adjusted weight factors better than other existing PSO methods in computing a precise convergence rate for excellent fusion results. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Sensor Review Emerald Publishing

IOT system environmental monitoring using IPSO weight factor estimation

Sensor Review, Volume 33 (3): 11 – Jun 14, 2013

Loading next page...
 
/lp/emerald-publishing/iot-system-environmental-monitoring-using-ipso-weight-factor-0n4hVlcnXj
Publisher
Emerald Publishing
Copyright
Copyright © 2013 Emerald Group Publishing Limited. All rights reserved.
ISSN
0260-2288
DOI
10.1108/02602281311324708
Publisher site
See Article on Publisher Site

Abstract

Purpose – This study aims to analyze the inertial weight factor value in the (PSO) algorithm and propose non‐linear weights with decreasing strategy to implement the improved PSO (IPSO) algorithm. Using various types of sensors, combined with ZigBee wireless sensor networks and the TCP/IP network. The GPRS/SMS long‐range wireless network will sense the measured data analysis and evaluation to create more effective monitoring and observation in a regional environment to achieve an Internet of Things with automated information exchange between persons and things. Design/methodology/approach – This study proposes a wireless sensor network system using ZigBee (PSoC‐1605A) chip, sensor and circuit boards to constitute the IOT system. The IOT system consists of a main coordinator (PSoC‐1605A), smart grid monitoring system, robotic arm detection warning system and temperature and humidity sensor network. The hardware components communicate with each other through wireless transmission. Each node collects data and sends messages to other objects in the network. Findings – This study employed IPSO to perform information fusion in a multi‐sensor network. The paper shows that IPSO improved the measurement preciseness via weight factors estimated via experimental simulations. The experimental results show that the IPSO algorithm optimally integrates the weight factors, information source fusion reliability, information redundancy and hierarchical structure integration in uncertain fusion cases. The sensor data approximates the optimal way to extract useful information from each fusion data and successfully eliminates noise interference, producing excellent fusion results. Practical implications – Robotic arm to tilt detection warning system: Several geographic areas are susceptible to severe tectonic plate movement, often generating earthquakes. Earthquakes cause great harm to public infrastructure, and a great threat to high‐tech, high‐precision machinery and production lines. To minimize the extent of earthquake disasters and allow managers to deal with power failures, vibration monitoring system construction can enhance manufacturing process quality and stability. Smart grid monitoring system: The greenhouse effect, global energy shortage and rising cost of traditional energy are related energy efficiency topics that have attracted much attention. The aim of this paper is that real‐time data rendering and analysis can be more effective in understanding electrical energy usage, resulting in a reduction in unnecessary consumption and waste. Temperature and humidity sensor network system: Environmental temperature and humidity monitoring and application of a wide range of precision industrial production lines, laboratories, antique works of art that have a higher standard of environmental temperature and humidity requirements. The environment has a considerable influence on biological lifeforms. The relative importance of environmental management and monitoring is acute. Originality/value – This paper improves the fixed inertial weight of the original particle swarm optimization (PSO) algorithm. An illustration in the paper indicates that IPSO applies the Internet of Things (IOT) system in monitoring a system via adjusted weight factors better than other existing PSO methods in computing a precise convergence rate for excellent fusion results.

Journal

Sensor ReviewEmerald Publishing

Published: Jun 14, 2013

Keywords: SoC; ZigBee; Information fusion; IOT; Particle swarm optimization (PSO); Sensors; Monitors; Condition monitoring

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off